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Preface

The ever-increasing rate of scientific research throughout the world, and
particularly in the United States, is a well-known fact. This increase is partly
evidenced by the growing number of books, papers, and reports published
every year. Indeed, we are faced with an information retrieval problem. If
the results of a piece of scientific work are to provide useful knowledge, the
expository technical papers or reports must be generally known and available,
and they must be capable of being understood and evaluated by the reader
(the problem of language is included here). The present monograph attempts to
bridge these gaps in one field—the vibration of plates.

From the beginning, two objectives were intrinsic in this work:

(1) A comprehensive set of available results for the frequencies and mode
shapes of free vibration of plates would be provided for the design or develop-
ment engineer.

(2) A summary of all known results would be provided for the researcher
in the field of plate vibrations.

These objectives will be elaborated upon below.

Several years ago I observed the following incident at & major aerospace
company. An engineer needed to know the first three frequencies and mode
shapes of a rectangular plate of a certain aspect ratio and with certain simple
restraint conditions along its edges. A literature search was conducted by
the engineer for 2 weeks, during which only the first two frequencies and no
accurate mode shapes were found. Since he had neither the analytical capa-
bility of solving the problem nor the money and time needed for an experimental
program, the engineer was forced to drop the problem at this point.

In the present study all direct results which are known for the aforemen-
tioned problem are presented. Furthermore, from & brief comparison among
the known results for other boundary conditions, estimates of additional
frequencies and mode shapes can be made. This is one way in which the
engineer can develop a qualitative understanding of plate vibrational behavior.
For the aforementioned problem, at least two approximate formulas are given
for estimates of frequencies. Finally, the mathematical techniques used in
the literature to solve the problem or related ones are pointed out in case more
accurate results are needed.

It is my hope that this monograph will reduce duplication of research effort
in plate vibrations in the future (a very pointed example is that of the square
plate clamped all around). In addition, the researcher is provided accurate
numerical results for the testing of new methods (this is the reason that results
are given to eight significant figures in some cases). Finally, it is hoped that
this work will give added perspective to the merits and complexities of applying
analytical techniques to eigenvalue problems.

m
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Gaps in knowledge are made implicitly obvious by examining this work.
For example, analytical results have been found for a clamped elliptical plate,
and experimental results for the free case, but no results whatsoever have been
found for the simply supported case.

The scope of this study was limited by several considerations. Only the
analytical results from plate theories were considered; that is, the governing
equations are two-dimensional, not three-dimensional. Materials were re-
stricted to those which are linearly elastic. Structures were not included in
the study; for example, a rectangular plate supported by one or more edge
beams was considered to be a structure.

The primary logical division of this work is by the complexity of the
governing differential equations. Thus, the first eight chapters deal with the
simplest ‘‘classical theory”” of plates. The next three chapters introduce the
complications of anisotropy, in-plane force, and variable thickness. Other
complications are discussed in the twelfth chapter. The first subdivision is
by geometrical shape; that is, circles, ellipses, rectangles, parallelograms, and
so forth. Further subdivision accounts for holes, boundary conditions, added
masses or springs, and so forth.

It is presupposed that the user of this monograph will have at least an
elementary understanding of plate theory. In order to increase understanding
and to define notation and assumptions more clearly, a reasonably rigorous
derivation of the plate equations is made in the appendix.

Some statements about the format of presentation will be useful in under-
standing this work. It will be seen that the majority of results available are
for the natural frequencies of free vibration and quite often only the funda-
mental (lowest) frequency. Patterns showing node lines are frequently
available for the higher modes. Mode shapes (deflection surfaces in two
dimensions) are usually not completely specified in the literature. It should
be remarked here that the mode shapes (eigenfunctions) cannot be completely
determined until the frequencies (eigenvalues) are found. The mode shapes
are generally known less accurately than the frequencies.

Virtually no one in the literature evaluates the bending stresses due to a
unit amplitude of motion. This information is obviously important, particu-
larly for fatigue studies. The lack of results is undoubtedly due to the fact
that the stresses must be obtained from second derivatives of the mode shapes.
Not only does this require additional computational work, but also the mode
shapes usually are not known with sufficient accuracy to give meaningful
results for stresses.

Frequency data were converted to the angular frequency » (radians/unit
time) or to a corresponding nondimensional frequency parameter, where
possible. Almost always the number of significant figures was kept the same
as that in the original publication. In no case were significant figures added.
In some few cases the number of significant figures was reduced because the
accuracy of the calculations in the publication did not justify the numbers
given. Curves were not replotted but were photographically enlarged and
traced to maximize accuracy. Quite often, when they are available, both
tabular and graphical results are given for a problem. Tabular results are
particularly important for measuring the accuracy of an analytical method,
whereas curves are valuable for interpolation, extrapolation, and qualitative
studies. In some cases many sets of results are given for the same problem.
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In these cases each set was derived by a different theoretical or experimental
technique; this permits a comparison of techniques.

Two of the major goals of the project were accuracy and completeness.
Some of the efforts made to maintain accuracy have been described in the
foregoing paragraphs.  Reasonable completeness of results published through
the end of the year 1965 is claimed. Writing of the manuscript began in the
summer of that year. In addition to the well-known abstracting journals,
several special-purpose bibliographies were used in order to procure pertinent
technical papers and reports. Further references were obtained from the
discussion and reference: lists within those already procured. -Approximately
150 letters were sent to people: throughout the world who were known tobe
active in the field of continuum vibrations. These letters listed their publica-
tions already in hand and asked for copies of any others which they deemed
applicable. Through these efforts I have come to possess a reasonably com-
plete set of literature in the field of plate vibrations. However, in spite of this,
I am convinced that some significant publications are not included, particularly
some which are known to exist but have been thus far unobtainable, especially
books by Soviet researchers.

In light of the preceding paragraph, I expect—indeed, hope—to receive
considerable valuable criticism pointing out errors or omissions. In addition, 1
would appreciate receiving copies of recent or forthcoming publications and
reports which are pertinent. It is my intention to write a supplement to this
volume after a few years have elapsed; such a document will correct any
major mistakes or omissions in this work and will report on further advances
in the field.

For historical record and recognition it should be pointed out that, ap-
proximately 6 months after this project began, I discovered a notable work
entitled ‘“Free Vibrations of Plates and Shells,” by V. S. Gontkevich, published
(in Russian) in 1964. A subsequent complete translation into English was
made under the sponsorship of the Lockheed Missiles & Space Co. This
book purports to do what the present monograph does and, in addition to plates
and shells, covers the fields of membranes and stiffened plates. I do not
wish to criticize the work of Mr. Gontkevich. Indeed, if used with great care,
his work can be used to supplement this monograph. Nevertheless, two
objective comments concerning Gontkevich’s work must be made for the record:

(1) The number of references on plate vibrations included is less than half
of those in the present monograph.

(2) The large number of typographical mistakes made and the difficulty
m interpreting the work (in either the original Russian or in the English
translation) decrease its usefulness enormously.

The present monograph, sponsored by the National Aeronautics and
Space Administration, is my first major undertaking in the ares of continuum
vibrations. It is to be continued by a 2-year project which is currently in
progress and summarizes the field of vibrations of shells. I would appreciate
receiving technical papers and reports related to that field from the readers
of this work.

The support of the National Aeronautics and Space Administration is
gratefully acknowledged. In particular, I am indebted to Mr. Douglas Michel
of NASA, who not only recognized the potential value of this work, but
was thinking of it before my proposal ever reached him. His technical com-



VIBRATION OF PLATES

ments and advice during the course of the work were also greatly appreciated.
I particularly wish to thank Messrs. Milton Vagins and S. G. Sampath, who
did all the necessary work so that I could be free for the actual summarization
and writing. Without their efforts in supervising the procurement of papers,
in manuscript editing, and in providing technical ecriticism, this work would
not have been possible. 1 wish to recognize the contributions of the project
advisory panel, which consisted of Mr. Michel, Drs. Robert Fulton, W. H.
Hoppmann, T. C. Huang, Eric Reissner, and Howard Wolko, who generously
met with me twice during the course of the project and offered their comments.
I also thank my colleagues, Drs. C. T. West and F. W. Niedenfuhr, for their
technical advice. Finally, the enormous editorial assistance of Mr. Chester
Ball, Mrs. Ada Simon, and Miss Doris Byrd of The Ohio State University is
gratefully acknowledged.

ArtHUR W. LEIssa

The Ohio State University
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Chapter 1

Fundamental Equations of Classical Plate Theory

The classical differential equation of motion
for the transverse displacement w of a plate is
given by (see app. A):

Ow

DV4w—i—pa;=0 (1.1)

where D is the flexural rigidity and is defined by

ER?
D= 12(1—»%)

(1.2)
E is Young’s modulus, % is the plate thickness,
v is Poisson’s ratio; p is mass density per unit
area of the plate, ¢ is time, and V4=V?V2, where
v? is the Laplacian operator.

When free vibrations are assumed, the mo-
tion is expressed as

w=W cos «t (1.3)

where « is the circular frequency (expressed in
radians/unit time) and W is a function only of
the position coordinates. Substituting equa-
tion (1.3) into equation (1.1} yields

V=Y W=0 (1.4)

where k is a parameter of convenience defined as

2

_
= (1.5)

It is usually convenient to factor equation (1.4)
into

(VB (VP W =0 (1.6)
whence, by the theory of linear differential
equeations, the complete solution to: equation
(1.6) can be obtained by superimposing the
solutions to the equations

VW;+k’W1=O}

VW, —EW,=0 7

In the case of a plate supported by (or
embedded in) a massless elastic medium (or
foundation), equation (1.1) becomes

o

2,
DVw+Kuwtp a‘—fzo (1.8)

where K is the stiffness of the foundation
measured in units of force per umit length of
deflection per unit area of contact. If the
foundation has significant mass, then its differ-
ential equation must also be written and a
coupled system of differential equations solved,
which is beyond the scope of the present work.

Assuming the deflection form (eq. (1.3)) and
substituting into equation (1.8) again results in
equation (1.4), where now

. pot—K
H==%

(1.9)

Thus, all results presented in this section as
pertaining to the classical plate equation (eq.
(1.1)) can also apply to the case of elastic
foundations by the simple use of equation (1.9)
in place of equation (1.5).

1.1 POLAR COORDINATES

The location of a point P in polar coordinates
is shown in figure 1.1.

Firaure 1.1.—Polar coordinate system.
1
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1.1.1 Classical Equations
The Laplacian operator expressed in polar
coordinates is

=artratrow (1.10)

Bending and twisting moments are related to
the displacements by

)

1 d%w QW
rbr+2602 )

Mfe=—D(1—V)a—r(;—a§

My=—D > (1.11)

&

Transverse shearing forces are given by
——D2 (v

——pld m '

Q= Dr > (V)

and the Kelvin-Kirchhoff edge reactions are
1 bM

V=@,

aM,, (1.13)

Vi=0Qs+ o>

The strain energy of bending and twisting of
a plate expressed in polar coordinates is

r=3/{
o%w lbw 1 O%w
—2(= ”){arz ror TR

_[a_r(iﬁ)] })dA (1.14)

where dA=r dr dé.

b"’w_§_10w 1 %w\?
ort ' r Or r2602

1.1.2 Solutions

When Fourier components in 6 are assumed,

Wir,8)= gwﬁ (*) cos no+>; W* (r) sin n8
(1.15)

OF PLATES

substituting equation (1.15) into equation (1.7)
vields

d ” n d W n 2\ W,
aF % dr l (1‘2 ) m=0
2TV W (1.16)
d ny 1 d LC n
& Trdr 2 \;ﬁ_kz) =0

and two identical equations for W). Equa-
tions (1.16) are recognized as forms of Bessel's
equation having solutions (cf. work of McLach-
lan, ref. 1.1)

T’V,zl =Aan(k7') +BnYn(kr)
Woy=CuL (k) + DKol [ 41D

respectively, where J, and Y, are the Bessel
functions of the first and second kinds, respec-
tively, and I, and K, are modified Bessel
functions of the first and second kinds, respec-
tively. The coefficients A4,, . . ., D, determine
the mode shape and are solved for from the
boundary conditions. Thus, the general solu-
tion to equation (1.4) in polar coordinates is

Wir, 0)= 33 [Ando(kr)+ BuY u(kr)
+ O, L(kr) + DK, (kr)] cos ng
+ 3 [A8T(kr)+ BAY o(kr)
+ Ot (kr)+ DK (kr)sin ng. (1.18)

1.2 ELLIPTICAL COORDINATES

Elliptical coordinates &, n are shown in figure
1.2 and are related to rectangular coordinates
2,y by the relation

z-+iy=c cosh (¢in)  (t=+4—1) (1.19)

where 2¢ is the interfocal distance. Separating
real and imaginary parts of equation (1.19)

yields
z=¢ cosh ¢ cos 'fl}

. 1.2
y=c sinh £ sin 9 (1.20)

1.2.1 Classical Equations
The Laplacian operator in elliptical co-
ordinates is {refs. 1.2 to 1.4)

2
= ¢¥(cosh 2t —cos 2n)(béz+b ) (1.21)
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Bending and twisting moments are related to the displacements by

Mo — 2D [ + Pw  (1—»p)sinh2¢ bw (1—y)sin2y Ow
¥~ 7 ¢*(cosh 26—cos 2n) | OF Yon®  (cosh 26—cos29) Of (cosh 2f—cos 29) On
Mo—— 2D 6210 b’ (1—»)sinh 2¢ ow (1—»)sin2y Ow  (1.22)
"= " ¢X(cosh 2E—cos 27)| " 0% ' 0n? ' (cosh 2f—cos 29) Of (cosh 2E—cos 2n) On ’
_ 2D(1—) w w . . Ow _
M= (cosh 2E—c0s 27)° [ % sin 294 o sinh 2¢ 3507 (cosh 2¢—cos 217)] ]

and the transverse shearing forces are given by (vef. 1.4)

= 242D : b"w
QE“c"’(cosh 2¢—cos 27)° [2 sinh 2¢ (W

Q'l= 2‘[§D

1.2.2 Solutions

It has been shown (ref. 1.5) that equations
(1.7) have solutions composed of two parts:

W,=§:‘,0{0m0em(£, Q-+ FnFeyn(§, @)lcen(n, @) \l

+ 25 [SnSent, @)+ GnGetin(t, )lsen(n, 0
Wa=33 [ChCen(t,~0) -
+FFekn(&,—q)Jcem(n,— @)
+30[S3Sen(t,—0)
+ G Gekn(t,— @] sen(n,—0)
(1.24)

where Oen, €en, Sen, 8¢n, Fey,, Fek,, Gey,,
and Gek,, are ordinary and modified Mathieu
functions of order m; C,, O, Sn S F,,
Fy, G, and @ are constants of integration;
and

q=k2=w\/mj (1.25)

The complete solution to equation (1.4) is then
W=W,+W, (1.26)

For asolid region containing the origin, regular-
ity conditions require that half of the terms in

w  O*w
¢*(cosh 26 —cos 29)52 [2 sin2y ( O +b

2, a? 2,
9 w) {cosh 2§—cos 27) a£< gf—{-a w)]

O%w

o))

equations (1.24) be discarded, and the complete
solution becomes:

(1.23)
> (cosh 28—cos 24) b(

W=m§0{0m0em(z, Q)cen(n, @
+ Oifzoem(sy Q)cem("?y - Q)]
+ 35 SnSen(t, sen(n, )

+85Sem(s,— 9l (1.27)

Q)sem("b -

n=120°
n=135°

7=180°

Fraure 1.2.—Elliptical coordinate system.
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1.3 RECTANGULAR COORDINATES

The rectangular coordinates of a point P are
shown in figure 1.3.

R —

Fioure 1.3.—Rectangular coordinate system.

1.3.1 Classical Equations
The Laplacian operator in rectangular co-
ordinates is

of | o
Vz=a—2+w (1.28)
Bending and twisting moments are related to
the displacements by

2 A
~—D(5F+57)
62
(ayz +» ’f) S (1.29)
e D(1—y) Y
le/_ D(l V) axay J
Transverse shearing forces are given by
—-p2
@=—D2 (V')
(1.30)

Q= —D%wzw)

and the Kelvin-Kirchhoff edge reactions are

Vz= Qz+ sz”

(1.31)

Vi=Q+ 0

The strain energy of bending and twisting of a
plate expressed in rectangular coordinates is

_D f {(wa 32w

0% 2w
~20-9) 3755~

2 by) ]}dA (1.32)

where dA=dz dy.

1.3.2 Solutions

General solutions to equation (1.4) in rec-
tangular coordinates may be obtained by
assuming Fourier series in one of the variables,
say z; that is,

Wz, )= ZYm(y) sxnax+Z)Y (y) cos az (1.33)

Substituting equation (1.33) into equation (1.7)
yields

d*Y .,
1 —a?)Y =0
av., (1.34)
37 —(F*+a?)Y ;=0

and two similar equations for Y, With the
assumption that k*>q?, solutions to equations
(1.34) are well known as

Y m=Ansin ViE—a?y+ B, coslP—aty }

Y m,=Cy, sinhVk*+ofy+ D, cosh VB oty
(1.35)

where A,, . . ., D, are arbitrary coefficients
determining the mode shape and are obtained
from the boundary conditions. If k2<{o?, it is
necessary to rewrite ¥, as

Y =Ansinh Vol —Ek%y+ B, cosh+o*—k*y (1.36)

Thus the complete solution to equation (1.4)
may be written as

W(z,y) =i__,‘1 (AnsinVEE—o?y+ B, cos Vi’ —a’y
+C,, sinh B+ o2y
+D,, cosh B+ o2y) sin az
1 SN (A% sin P —aPy -+ B cosIP—oly
m=0
~+ Ok sinh v+ oy
4+ D¥ cosh+/k24-aoy) cosar  (1.37)
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1.4 SKEW COORDINATES

The skew coordinates £, # of a point P are
shown in figure 1.4. The skew coordinates are
related to rectangular coordinates by

f=z—ytane
Y (1.38)

T Cosa

1.4.1 Classical Equations

The Laplacian operator in skew coordinates
is (ref. 1.6)

. S 1.39
" cos?a\ ¢ Smabsb (1.39)

Bending and twisting moments are related to
the displacements by

v in? o 2%
D[DEZ cos%z(sm “oF

. o*w |, Q*w
_2smabgb +bn )]

i:cos (sm ab£2 >
Ow | O*w O%w
—2smab£b +b 3 yy
__pl=y) oMy
Me=— COSa asa Slnab£2> )
(1.40)
y 7
—————————— » P
/
a /
/
/
/
B ,’
\ yi x,£

Fieure 1.4—Skew coordinate system.

Transverse shearing forces are (ref. 1.7):

D [o*w *w h
=" s W‘“"Sﬁ&_‘*’i

3
+(1+2 cos? B)béb 3 cosﬁg w]

D To%w o*w
="t pLay 2 F3rar

+(1+2 Coszﬂ)bgza —Co08 Bagi‘)
(1.41)

where = {(n/2)—a. The edgereactions are (ref.
1.7):

3 3 N
Vim— D [o%w o%w

s BLoE 1Py
O%w
_ 2 cin2ay 20
{2-+3 cos? B—v sin B)bfbn2
Ow
—2 cos ﬁ‘a—‘ﬁ']

D [ 9w odw

smgLor 1 P3ror
3
— 25 Ginzg) OW.
(2+3 cos? B—y sin B)bfzb

—2 cosﬂags]
(1.42)

The strain energy of bending and twisting of
a plate expressed in skew coordinates is

= D f O b"’fw b“’w)
- cos4 Y bfbn bn
2(1—u) Q'wd'w
cos?a |_OF2 On® DEC?}) ]}dA (1.43)
where dA=cos « d dn.

1.4.2 Solutions

There are no known general solutions to
equation (1.4) in skew coordinates which allow
a separation of variables.
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Circular Plates

2.1 SOLID CIRCULAR PLATES

When the origin of a polar coordinate system
is taken to coincide with the center of the
circular plate and plates having no internal holes
are considered, the terms of equation (1.18)
involving Y,(kr) and K,(kr) must be discarded
in order to avoid infinite deflections and stresses
at r=0. T{ the boundary conditions possess
symmetry with respect to one or more diameters
of the circle, then the terms involving sin né
are not needed. When these simplifications
are employed, equation (1.18) becomes for a
typical mode:

Wo=1A4,Jkr) + O, I, (kr) cos nd (2.1)

where it will be understood in what follows that
n can take on all values from 0 to «. The
subscript n will also correspond to the number
of nodal diameters.

2.14.1 Plates Ciamped All Around
Let the outside radius of the plate clamped
all around be a (see fig. 2.1). The boundary

conditions are:
W(a)=0
oW(a) _

(2.2)
or 0

When equation (2.1) is substituted into equa-
tions (2.2), the existence of a nontrivial solution
yields the characteristic determinant

JaN) L.\
J.N LN

‘:0 (2.3)

where A=ka and the primes are used to indicate
differentiation with respect to the argument, in

this case &r. Using the recursion relationships
(ref. 2.1)

AT 2(M)=ne (M) =N 5 11(A)

M) =ALuN) M () 24)

Chapter 2

e
N

)

Fiqure 2.1.—Clamped circular plate.
and expanding equation (2.3) gives
oM 1N+ 1N S 2 s1(N)=0 (2.5)

The eigenvalues X determining the frequencies w
are the roots of equation (2.5).

The Bessel functions are widely tabulated for
small values of #n. The Harvard tables (ref. 2.2)
are available for n £120. Otherwise, the recur-
sion relationships

Jn+2=§ n+1) 1~
9 (2.6)
In+2=—i(n+z)1n+l+1n

or various forms of series expansions for the
Bessel functions may be used.

Values of A\? taken from references 2.3 to 2.5
are tabulated in table 2.1, where n refers to the
number 6f nodal diameters and s is the number
of nodal circles, not including the boundary

7
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TABLE 2.1.—Values of N=wa?/p/D for a Clamped Circular Plate

A2 for values of n of—

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[ 10,2158 | 21.26 | 84.88 | 51.04 | 69.6659 ; 90.7390 {114.2126 |140.0561 |168. 2445 !198. 7561 |231. 5732 1266. 6790 [304.0601 {343. 7033 (385.5996
) IO 39.771 60.82 | 84.58 | 111.01 |140.1079 |171.8029 {206. 0706 |242.8782 ;282.1977 [324.0036 {368.2734 {.. .. _._ | - .. |-coo o _|oooo.
2 e 80.104 | 120.08 | 153.81 | 190.30 [220. 5186 [271.4283 {316.0015 {363.2087 | .. .| o oeofoomea oo mme oo
[ I, 158.183 | 199.06 | 242.71 | 289,17 ;338.4113 1390.3806 | .. ____ i .o
L S 247.005 | 207.77 | B81.38 | 407.72 {. oo fe e e el
| 355,568 | 416.20 | 479.65 | 545.97

6 ... 483.872 | 554.37 | 627.75 | 703.95

[ S— 631.914 | 712.30 | 795.52 | 881.67 |..

- S 799,702 | 889.95 ; 983.07 (1079.0

| 987,216 |1087.4 |1190.4 |1206.2

circle. It is seen from equations (2.2) that the
frequency does not depend upon Poisson’s ratio
in the clamped case. An accurate transcen-
dental approximating equation for additional
roots of equation (2.5) is given in reference 2.5.
The mode shapes of equation (2.1) are
determined from either of equations (2.2).
Using the first of equations (2.2)
A I.(N)

Cn  JaN)

(2.7)

where the A values are taken from table 2.1.
The radii of nodal circles p=r/a are determined
from the equation

T2(00)_ L(Ao)
.00 L0V

(2.8

and are presented in table 2.2 as taken from
reference 2.6.

The procedure for determining the moticn
of a plate subjected to arbitrary initial dis-
placement and velocity conditions is given in
reference 2.7.

The problem of finding stresses in a vibrating
clamped circular plate was discussed by Ungar
(ref. 2.8). The problem was also discussed
in references 2.9 to 2.18.

For more information concerning this prob-
lem, see the section in the present work on
in-plane forces in clamped circular plates
(10.1.1).

2.1.2 Plates Simply Supporied All Around
Let the outside radius of the simply supported

plate be a (see fig. 2.2).
conditions are
W(a)=0}
M {(a)=0

Substituting equation (2.1) and equation (1.11)
into equations (2.9) and noting that d%w/06°=0
on the boundary give the equations

The boundary

(2.9)

AN+ Cu, (N)=0
a7+ Jra] me+inm J-o

(2.10)

Ficure 2.2.—Simply supported circular plate.
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TaBLE 2.2.—Radii of Nodal Circles p=r/a for Clamped Circular Plate

o for values of n of—
s
0 1 2 3 4 5
U 1.0 1.0 1.0 1.0 1.0 1.0
. 379 . 4899 . 559 . 606 . 641 . 669
2 e 1.0 1.0 1.0 1.0 1.0 1.0
. 583 . 640 . 679 .708 .730 . 749
. 255 . 350 .414 . 462 . 501 . 532
B e 1.0 1.0 1.0 1.0 1.0 1.0
. 688 .721 .746 . 765 .781 . 787
. 439 . 497 . 540 574 . 601 618
.191 .272 . 330 . 375 412 . 439
4 e 1.0 1.0 1.0 LO oo
. 749 .767 . 789 803 |- .
. 550 . 589 . 620 645 e .
. 351 . 407 . 449 CA88 .
. 153 . 222 .274 L8168 | __
B 1.0 1.0 ||
.791 807 | e
. 625 LB83  |e e e
. 459 499 e
.293 PR 7 ¥ S Y AR SR PRIU [P
. 127 188 | e e e
TP 1.0 L0 || e
. 822 838 | e
. 678 699 | e
. 535 1+ T DU PRSP DU ORISR
. 393 432 | e e
. 251 298 e e
. 109 L1638 e e e e
f 2 1.0 1.0 | e e
.844 858 o e e e 2
. 720 N3 T U [N FEUUU RIS SRR
.593 617 e e
. 469 499 || e
. 344 881 e
. 220 263 e e
. 096 344 | e e

where the notation of the previous section is
used. It has been shown (ref. 2.11) that equa-
tions (2.10) lead to the frequency equation

JutiN) |, Lasi(d) _ 20
Ja(A) T LN 1=

Roots of equation (2.11) and radii of nodal

circles for »=0.3 are taken from reference 2.6

and presented in tables 2.3 and 2.4, respectively.

Poisson, in an early paper (réf. 2.12), and

Prescott (vef. 2.11) give A=2.204 for »=0.25.

Bodine (ref. 2.19) (see section entitled ‘Plates
2308-337 0—70——2

+ (2.11)

TaBLeE 2.3.—Values of N=wap/D for a
Simply Supported Circular Plate; v=0.3

A for values of n of—

s
6 1 2
1 4.977 13.94 25. 65
) S 29.76 48.51 70. 14
2 . 74.20 102. 80 134.33
S 138. 34 176.84 218.24
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TaBLE 2.4.—Radii of Nodal Circles p=r/a for a
Simply Supported Circular Plate; v=0.3

p for values of n of—
8
0 1 2
Q.. 1 1 1
| 1 1 1
.441 . 550 .613
2 e _ 1 1 i
. 644 . 692 . 726
. 279 . 378 . 443
R S 1 1 1
.736 .765 L7187
. 469 . 528 . 570
. 204 . 288 . 348

Supported on Circle of Arbitrary Radius”
(2.1.7)) gives A=2.228 for »=0.333.

The mode shapes are most conveniently
determined from the first of equations (2.10)
by use of the roots of table 2.3; that is,

A, L.\

G, .00 (2.12)

The procedure for determining the motion of
a plate subjected to arbitrary initial displace-
ment and velocity conditions is given in
reference 2.7.

The simply supported case is also solved in
reference 2.20.

For more information concerning this prob-
lem, see section entitled “Simply Supported
Circular Plates” (10.1.2).

2.1.3 Completely Free Plates

Let the outside radius of the completely
free plate be a (see fig. 2.3). The boundary
conditions are

M,(a,)=0}

Via)=0 (2.18;

Using equations (1.11), (1.12), (1.13), it has
been shown (ref. 2.3) that equations {2.13)
vield the frequency equation

FiGure 2.3.—Free circular plate.

NN+ (1 =v) N (V) —n*T (N)]

ML\ — Q=) NN —n T, ()]
_ ML)+ —=n)n’ NN — (V)]
ML) —(1—v)n® N L(A)—1,(M\)]

(2.14)

It has also been shown (ref. 2.20) that, when
A>>>n, one can replace equation (2.14) by the
approximate formula

JN) N +2(1 =] [N/ (N —2M1 —»)
Ja(N) T N—2(1—v)n?

(2.15)

According to reference 2.20, the roots of
equation (2.14) are located between the zeroes
of the functions J,(») and J,(\) and the
larger roots may be calculated from the series
expansion

_m+1 4(7m*+22m+11)

o Sy (2.16)

A=a

wherem=4n? and o= (r/2)(n+2s). The asymp-
totic value is

xgg(n+2s) (2.17)

Using equations (2.15) and (2.16), values of
A? are computed in reference 2.20 for »=0.33,
and in reference 2.3, for »=0.25. These are
presented in tables 2.5 and 2.6, respectively.
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TasLe 2.5.—Values of N*=wa’vp/D for a Completely Free Circular Plate; v=0.33

A2 for values of n of—
s
0 1 2 3 4 5 6
0 e 5. 253 12, 23 =21. 6 2331 2 46. 2
) 9. 084 20. 52 35. 25 52. 91 2731 s 95 8 %1210
2 38. 55 59. 86 83.9 111. 3 142. 8 175. 0 210. 3
[ 87. 80 119. 0 154. 0 192. 1 232. 3 274. 6 319. 7
4 . 157. 0 198. 2 242. 7 290. 7 340. 4 392. 4 447. 3
L S 245. 9 296. 9 350. 8 408. 4 467. 9 529. 5 593. 9
6 o __. 354. 6 415. 3 479. 2 546. 2 615. 0 686. 4 760. 1
T e 483. 1 651. 8 627. 0 703. 3 781. 8 864. 4 952. 3
8 o ____ 6310 711. 3 794. 7 880. 3 968. 5 1061 1158. 7
8 . 798. 6 888. 6 081. 6 1076 1175 1277 1384
10 ... 986. 0 1086 1188 1292 1401 1513 1631

2 Values true within 2 percent (ref. 2.20).

TaBLE 2.6.—Values of \2=wa%/p/D for a Com-
pletely Free Circular Plate; v=0.26

A? for values of n of—
]
0 1 2 3
O | 5.513 12.75
) S 8. 892 20. 41 35.28 53. 16
2l 38. 34 59.74 | 84.38 112. 36
S 87. 65 118.88 | 153.29 191. 02
4 . 156.73 196. 67 | 241.99 289. 51
L R 245. 52 296.46 | 350.48 408. 16
6 . 354.08 414.86 | 478.73 545. 83
A 482.37 553.00 | 626.75 703. 63
8 ___.._| 630.41 710.92 | 794.51 881.20
L P 798.23 888.58 | 982.01 | 1078.5

The radii p=r/a of the nodal circles may
be found from reference 2.20:

(=) NN =T (M) ] +NJ (M)
_ JAOIIRY AN YA
(1 V)[)‘In()‘f’) " In(xP) A In()‘P)
(2.18)

Jn {Ap):

Table 2.7 gives values of p=rfa for »=0.33
computed from equation (2.18).

For large values of # and s it has been shown
(ref. 2.20) that the radii of nodal circles can be
computed from the approximate formula

TasLe 2.7.—Radii of Nodal Circles p=rt/a for a
Completely Free Circular Plate; v=0.33

p for values of n of—
s
0 1 2 3 4 5
| S 0.680 |0.781 |0.822 ]0.847 |0.863 | 0.881
2. .841 | .871 [ .8897 | .925 | .926 | .993
.391 | .4972 | .562 | .605 | .635 | .663
T .893 | .932 | .936 | .939 | .943 | .947
.591 | .643 | .678 | .704 | .726 | .745
.257 | .351 | .414 | .460 | .498 | .529
4 ... .941 | .946 | .950 | .951 | .955 | .958
.691 ;1 .723 | .746 | .763 | .779 { .793
.441 | .498 | .540 | .572 | .600 | .623
L1921 .272 ) 330 | .374 | .411 | .443
s S -952 | .956 | .959 | .960 | .963 | .966
.752 | .773 | .790 | .803 | .814 | .825
.52 .590 | .620 | .644 | .644 | .682
.352 | .407 | .449 | .483 | .512 | .536
.164 | .222 | .274 | .316 | .351 | .381

xﬂ
(p)§=)Ts: (2.19)
where A7 is the pth root
Jo{N)=0.

Experimental results were obtained for a free
circular brass plate (ref. 2.21). The ratios of
frequencies of free vibration o to the funda-
mental frequency w, are presented in table 2.8

of the equation
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Ficure 2.4.—Experimental values of frequency ratios
w/w, for a completely free circular brass plate. (After
ref. 2.21)
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and figure 2.4 taken from reference 2.21. Radii
of nodal circles p=r/a are given in table 2.9.
Other experimental data are presented in
references 2.20 and 2.22 to 2.28. Further dis-
cussion of this problem is given in references
2.10, 2.11, 2.12, 2.15, 2.17, 2.29, 2.30, and 2.31,

2.1.4 Plates With Elastic Edge Supports

Consider a circular plate of radius @ sup-
ported elastically by springs uniformly dis-
tributed about its contour as shown in figure
2.5. Translation in the direction of w is op-
posed by springs having distributed stiffness
K, (force/(unit length)?). Edge rotation y is
opposed by spiral springs having distributed
stiffness K, (moment/unit length).

—61

3@— : -
ressra e

iy
Ficure 2.5.—Elastically supported circular plate.

<
b

Kw

TaBLE 2.9.—Ezperimentally Determined Radii of Nodal Circles p=r/a for a Completely Free
Circular Brass Plate

o for values of n of—
Circles s
0 1 2 3 4 5 6 7 8 9 10 11
P 0.680 | 0.781 | 0.823 | 0.843 | 0.859 | 0. 871 | 0.880 | 0. 889 | 0.897 | 0.903 | 0.909 | 0. 912
P . 391 497 | .562 | .604 | .635, .662 | .681 702 715 ||
. 843 87 | .887 | .898 | .906 915 922 927 932 ||
S . 257 | . 349 415 | .461 | .505 | .83l |o_ oo eemce oo
. 591 643 | .681 | .706 | .728 | 745 |- |eee e |eeii oo
- 895 902 913 919 | .925 | .933 |._ .|l ceecfceae
- . 190 269 | . 328 374 431 | 443 |ooo || e eemce s
-441 | . 495 | . 540 571 | 896 | 623 | |eeo oo
. 692 726 . T48 ] (764 | .T779 | 794 ||l |ei|emmee
.918 | .928 . 934 938 | .941 L944 | el
L T [ 17 S ) S SV MU FRUNOIOUUNY RN PUUUPIUR RSVUPIRU SOV PP SN
21 I SOSRRRRPE FRRURPRPIV USRI PN SUSUPUPIOION FONPUSOEY RUIIOTUUSIN U SO PSR IR
. 2 Y RPN (RUTOUPR FRVRUUO NSRRI SISO MPUPURGUU FRR (AU R
£ 20 R RO PURURUPURS PRGN NSRUU FURUPRRUON NUNURUPRN NSRRI (SRR U IR
L9686 | e e e e e
| B £ S PR SRR PRSI SRR PSSV IUOROUOUNY FROUPUIURR NSRRI DUNPIPUPRUE FUUES T
2292 | e e e ] e e e
CAB6 | e e e
N 7 S DR (SO (ROUIOpIpR SUURURUN (RSP NSRRI SV SUNPUSUIIN [N FUNU AN
N - S RS (RPN FRUUIIPUUN FOOUS PRSP RSS! R NP SRS SNSRI NORN
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The boundary conditions are
ow
Mia,0)=K,—(a,0
(@,0=K,22(0,0) } .20
Via,86)=—K,W(a,0)
Substituting equation (2.1) into equations
(2.20) and using recursion formulas of the type

of equations (2.4) and (2.6), it can be shown
that equations (2.20) become

An{wm(mwn_z(x)]
G AR S AN
—(2+25) 7 }
~:—B,,{{1n+z<x>+1n_z<x>1
+§<V+I%“) L st + i V)]

+(2—4T’”f)1,,(>\)}=o (2.21)

and
2 .
T L OV S RS AR

+[3+%+‘£}%M] [Jass(N) = (V)]

4 2K ,a*
+ﬁ 2(3—-:/)722—)\2——D(1'—]Jn()\)}

+Bn{ UnssN)+TosV)]

2

5 HarsW) +Tas(V)]

+[3__:‘£_4_(2_;2Mf]{1n+1(>\)+1n-1(>\)]

4 2K a?
+5 2(2—3y)n2+x2—_—7”"- }I,,(x):g
(2.22)

Formulation of the second-order characteristic de-
terminant for the frequencies from equations
(2.21) and (2.22) is a trivial operation. In the
case n=0, the frequency equation simplifies to

JoMN)+pJi(N)_ Lotpli(N)

= 2
FO—g I L—ah(n) %)
where
M’E%l—(l-ﬂ')
and
K a®
L Po—
Ng= ¥2)

The problem was formulated in a similar
manner in reference 2.32 for the special case
when only an elastic moment edge constraint
is allowed ; that is, the boundary conditions are

M(a,8)=K, %? (a,6) } (2.24)
W(a, 6)=0

This case is obtained by setting K,=~ in
equation (2.22). Numerical results for the
first four frequencies for equations (2.24) for
varying amounts of rotational constraint are
given in table 2.10. Poisson’s ratio is not
given in reference 2.32, but it appears to be
0.3 for table 2.10.

TABLE -2.10.—Values of N=wa?\/p/D for a
Circular Plate With No Edge Deflections and
Elastic Moment Constraint; v=0.8

a2 for values of n of—
K,D
0
“ 1 2
s=0 s=1

- 10. 2 30.7 21.2 34.8
00 . 10.2 39.7 21.2 34.8
107 .. 10.0 39.1 20.9 34.2
102 ________.. 8.76 35.2 18.6 30.8
102 ___ .. 6. 05 30.8 15.0 26.7
—0_ .. 4.93 29.7 13.9 25.6

2.1.5 Plates Clamped Along Part of Boundary
and Simply Supported Along Remainder

Figure 2.6 shows a circular plate which is
clamped along its edge for the interval —y<(6
<7 and simply supported on y<8<27—w.
This problem was solved by Bartlett (ref. 2.33)
by an interesting variational approach to give



CIRCULAR

Figure 2.6.—Circular plate partially clamped and
partially simply supported.

upper and lower bounds for the eigenvalues.
The method is based upon two perturbations.
One is a perturbation of the problem when the
plate is clamped all around (y=n=) and yields
upper bounds for A; the other is a perturbation
of the simply supported case (y=0) and yields
lower bounds. Upper and lower bounds for
A? for the case v=1/4 are presented in table 2.11
as taken from reference 2.33.

An approximate solution to this problem was
given by Noble (ref. 2.34), who showed that a
good approximation of the frequency parameter
A is given by the roots of the equation

SN L LVT

R VYA

1
_( _VH_ln (sinv/2)
(2.25)

A comparison of the values of A obtained from
equation (2.25) and the more accurate results of
reference 2.33 is given in figure 2.7.

This problem was also discussed in references

PLATES 15

3.5
3 /
7
7
4
‘4
d
A {hom reference 2.33 4 //
/d
Cd
//
"
<
[from reference 2.34]
2.0
° %1 -l-v 3 L4

Y

Fieure 2.7.-—Comparison of frequency parameters
obtained by two methods for a circular plate with
mixed boundary conditions; v=1/4. (After ref. 2.34)

2.35 and 2.36 wherein a method superimposing
concentrated moments along parts of the bound-
ary to be clamped was proposed. A numerical
solution A= {(pw?/D)#a=3.98 is given for the
case when one-fourth of the boundary is
clamped, but this is clearly erroneous because
it is greater than the value for a completely
clamped plate.

2.1.6 Plates Clamped at Center With Various
Conditions on Contour

In the case of plates clamped at the center
that have various conditions on contour, it is
obvious that for two or more nodal diameters
(n22) the resultant frequencies and mode

TaBLE 2.11.—Values of N*=wa?yp/D for a Circular Plate Clamped Along the Boundary Through
an Angle 2y and Simply Supported Along the Rest of the Boundary; v=1/4

»? for values of v of—

Bound
0 z/8 2x(8 3x/8 4x/8 5#/8 6x/8 7=/8 T
Upper. - oo e 5. 871 6. 350 6. 880 7. 508 8. 231 9. 120 9. 885 10. 21
Lower. oo . 4. 862 5. 842 6. 335 6. 864 7. 480 8. 162 8. 880 9126 (... _..__
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shapes are identical to those obtained in the
previous sections when =no constraint was
applied at the center. This can be seen be-
cause at the intersection of two node lines the
slopes in all directions, as well as the deflection,
are zero.

Southwell (ref. 2.37) discussed the problem
of a free disk clamped at the center as a special
case of an annulus free on the outside and
clamped on the inner edge (see section entitled
“Annular Plates Free on Outside and Clamped
on Inside” (2.2.7)). It is necessary to evaluate
the fourth-order characteristic determinant by
a careful limit process as the inner radius ap-
proaches zero. He showed that in the case of
one nodal diameter (n=1) the set of frequencies
is identical to those for the completely free
plate. For the axisymmetric case (n=0), the
first four roots for »=0.3 are given as:

N=wa?yp/D=3.752
=20.91
=60.68
=119.7
Colwell and Hardy (ref. 2.20) showed that

the frequency equation for the axisymmetric
case can be approximated accurately by

BN —=Yo&) 2(1—») I\
EJ,(\)—Y.(\) A IL(»)

(2.26)

OF PLATES

where E=(In 2)—Euler’s constant=0.11593.
The first 11 roots of equation (2.26) for »=1/3
are given in table 2.12. It is seen that higher
roots of A are separated by .

The equation determining nodal radii p=r/a
is (ref. 2.20)

EJ(Ap)=To(Np) (2.27)

and has roots given in table 2.13 for »=1/3.

Reference 2.11 gives wa?y/p/D=3.717 for v=
0.25.

The axisymmetric cases for the plates having
simply supported or clamped edges in addition
to a point support at the center are discussed in
reference 2.38. The frequency equation for the
simply supported plate becomes

(=04 L= T+ 2K ]

AW+ T+ 20 |}
—[ LT +2 IR [0 (229

which has as its first two roots (v is not given,
but apparently is 0.3):

A=14.8
=49.4

TaBLE 2.12.—Values of N=wa*/p/D for Axisymmetric Vibrations of a Free Circular Plate Fized
at the Center; »v=1/3

8 & 1 2 3 4

5 8 7 8 9 10

3.752 | 20.91 61. 2 120. 6 199. ¢

208.2 | 416.6 | 555.1 | 712.9 | 890. 4 1088

TaBLE 2.13.—Roots for Determining Relative Radii p=r/a for a Free Circular Plate Fized at the
Center; v=1/3

{Values of p are determined by dividing each of successive roots by value of A of desired mode]

s t 1 2 3 ‘ 4 5

l 8 7 8 9 10

7.08 10. 20 i3. 33

16. 49

19. 61 22.75 25. 90 29. 04 32. 18
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The frequency equation for the clamped plate is
o~ I T+ 2K |
—{Jl(x)+I,(x)][Yo()\)+12—rKo()\)]=O (2.29)

which has as its first two roots:

N=22.7
=61.9

2.1.7 Plates Supported on Circle of Arbitrary
Radius
A circular plate having a free outside edge of
radius @ is supported on a concentric ring
having a radius b as shown in figure 2.8. The
solution of this problem is very straightforward.
One can recognize symmetry and take

WnizAniJn(kr)+ Bn1Yn(kr)+ Onfln(kr)
+D, Ku(kr)  (i=1,2) (2.30)

from equation (1.18), where the subscript 1
refers to the region 0</r<(b and the subscript 2
refers to 6<r<la; Ba; and D=, are discarded
to satisfy regularity conditions at r=0.
The remaining six boundary and continuity
conditions

wi (b)=we(d)=0 "
.,(6) 0,(b)

or or
() _dwi(b) (2:31)
or*  or

M, (&)=V,(a)=0 |

are satisfied by substituting equation (2.30) into
equations (2.31) and forming a sixth-order char-

g
e

F1eure 2.8.—Circular plate supported on a concentric
eircle.

N °
g
s e

acteristic determinant equation. The roots of
the determinant are found by evaluating it
by computer for many values of A for a given
b/a ratio.

The numerical solution of this problem 1is
reported in reference 2.19 for the fundamental
mode. The frequency parameter A?is plotted
in figure 2.9 and mode shapes for three repre-
sentative b/a ratios are shown in figure 2.10,
both for »=1/3.

2.1.8 Plates With Concentrated Mass at Center
The problems of free and clamped circular
plates having a concentrated mass m at the
center were solved by Roberson (refs. 2.39 and
2.40) for the case of axisymmetric modes. The
concentrated mass was treated as an impulse in
the mass density function. The impulsive
change in density makes it convenient to solve
the problem by Laplace transform methods.

In the case of the plate having free edges, it
is shown (ref. 2.39) that the frequency equation
takes the form

__ b
N te2) 4

(2.32)
where
#H0)=F] TOVL0)+Fo 00
2 i
—20—)ViE0) |-
¢2<>~>=[J1<A>Ko<x>—Jo(x>Kl<x>
2 1
2= |-+
¢s<x>=[Jo<x>11(x>+Jl(x>zo<x>

2
—U= 0L |
(2.33)

and g is the ratio of the concentrated mass at
the center to the mass of the plate; that is,

m

= 2.34

L4 x pa,2 ( 3 )

The first four roots of equation (2.32) are shown
graphically in figure 2.11 (for »=0.3) as func-
tions of the mass ratio p. An asymptotic-
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36761 ©2 03 04 05 06 07 08 05 10

b/a

FiGuRE 2.9.—Values of N?=wa?/p/D for a ecircular
plate of radius a supported on a concentric circle
of radius b (for fundamental mode); »=1/3. (After
ref. 2.19)

AV S

{ci

ol=

Froure 2.10.—Fundamental mode shapes for a eircular
plate supported on = concentric circle; »==1/3.
(@) b/a=10.392; M=6.502. (b) b/a=0.699; \*=9.024.
(c) b/a=0.814; M¥="7.301. (After ref. 2.19)

7{32{78 {42 PN
\

64284724134
\N

54244664126 S\
NN [

adooleolng AT 223
0~ 02 0.4 06 08 10 12 14

$s2 \'N-_~

Fraure 2.11.—Values of N=wa?y/p/D for various mass
ratios for a free circular plate having a concentrated
mass at the center; v=0.3. (After ref. 2.39)

expansion estimate of the higher roots for the
above problem can be obtained from the
frequency equation

__{TENy2
tan A= (8>)‘

The accuracy of equation (2.35) is shown by
table 2.14 for the extreme mass ratios of p=o
and p=0. The first mode shape is shown in
figure 2.12 for three values of mass ratio.

For the clamped plate (ref. 2.40) the fre-
quency equation is also given by equation (2.32)
where, in this case,

(2.35)

HO=F LMY +HLNT W

SN =T WK —JNEN+5 b (236)

$s(M)=Lo(N)J:(N)+1:(N) Jo(A)

The first four roots of equation (2.32) are shown
graphically in figure 2.13 as functions of the
mass ratio g. It i1s noted that in the case of
clamped edges the frequencies are independent
of Poisson’s ratio. More precise values of A
for =0, 0.05, and 0.10 are given in table 2.15.

It should be noted that for both types of edge
conditions (free or clamped) the frequency
changes rapidly with the addition of a small
amount of mass at the center, particularly for
the higher modes.
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TaBLE 2.14.—Comparison of Roots N* From Asymptotic-Expansion Estimate With Ezxact Values;

L
a

F1eurE 2.12.—First mode shape for a free plate having

a concentrated mass at its center; »=0.3. (After
ref. 2.39)
A? VALUES
s—| 2 3 4
107424901160
84384844152 -\
6434478444
M~
44304724136 = -
N
2426 {664i28 \\\
N o3 ‘[=2
$24 | |
0422 4604
8020552 04 06 o8 10 12 14 u

FiGURE 2.13.—Values of M=waly/p/D for various mass
ratios for a clamped circular plate having a con-
centrated mass at the center. (After ref. 2.40)

v=0.3
A2 for values of g of—
oo 4]
8
Value from Estimate from Error of Value from Estimate from Error of
eq. (2.32) eq. (2.35) estimate, eq. (2.32) eq. (2.35) estimate,
[(2s—1)(=/2)7 percent (sx)? percent,
| S 3.73 2. 47 —33.8 9. 006 9. 87 9.6
2 . 20. 9 22. 20 6.2 38. 44 39. 48 2.7
b S 60. 5 61. 69 1.9 87.76 88. 83 1.2
4 __________ 119. 7 120. 91 1.0 156. 75 157. 90 .7
L U PR 199. 85 |, oo 246,74 |oc . ___.___
SN (S 208. 56 | |ee e emaa 355.32 | ___
AU S 4316.98 | eeeas 483.60 |__.___________
TABLE 2.15.—Precise Values of X*=wa?y/p/D for
" a Clamped Circular Plate Having a Concen-
i trated Mass at the Center
T~
T "'=0
2 S
§ e \% N . A? for values of u of
5o = N
g ™~ o 0 0.05 0.10
e
;S 10. 214 9. 0120 8. 1111
10 2. 39.766 32. 833 29. 681
E S 89. 114 72.012 67.733
0 oi 02 02 04 05 06 07 08 09 10 ERRREEEEEE 158.18 129.39 125.69

The clamped case having a general concen-
trated impedance at the center was discussed
in reference 2.41, though no numerical results
were presented therein.

2.2 ANNULAR PLATES

An annular plate consists of a circular outer
boundary and a concentric circular inner bound-
ary. Throughout this work the radii ¢ and &
will define the outer and inner boundaries,
respectively.

There exist nine possible combinations of sim-
ple boundary conditions (i.e., clamped, simply
supported, or free) for the two boundaries. An
outstanding set of results was given by Raju
(ref. 2.42) for all nine combinations of boundary
conditions for a Poisson’s ratio of 1/3, and the
results which follow draw heavily from his work.
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Joga-Rao and Pickett (ref. 2.43) also evaluated
the exact characteristic determinants in the
axisymmetric case when the outside boundary
is clamped, simply supported, or free and the
inside boundary is free. Their results closely
match those of Raju and will not be repeated
here. They also analyzed these cases for
a/b=0.5 by the Rayleigh-Ritz method and
obtained confirming results.

Two-term Rayleigh-Ritz solutions were used
in reference 2.44 to obtain approximate axi-
symmetric frequency parameters for all but the
free-free cases. These results are summarized
in table 2.16 for »=1/3 and are compared with
exact solutions. The b/a ratio is 0.5 throughout
the table.

Sakharov (ref. 2.45) solved the cases for
plates with the outside clamped or simply sup-
ported and the inside free, and Gontkevich
(ref. 2.6) presented results for four additional
cases but omitted those for the simply supported
inside boundary. Vogel and Skinner (ref. 2.46)
in a recent paper also obtained exact solutions
for all nine cases.

OF PLATES

In addition, Southwell (ref. 2.37) presented
results for the outside-free, inside-clamped case;
Hort and Koenig (ref. 2.47) and Kumai (ref.
2.48) gave theoretical and experimental results
for annular plates of given dimensions; reference
2.47 deals with the free-free case and reference
2.48, with the case for both edges either clamped
or simply supported.

2.2.1  Annular Plates Clamped on Qutside and

Inside

Substituting the complete solution (eq.
(1.18)) for the cos n6 terms into the boundary
conditions W=dW/dr=0 at r=q¢ and r=b
yields four homogeneous equations in 4,, B,,
C,, and D, for which a nontrivial solution can
exist only if the determinant of coefficients 1is
zero. Using recursion relationships of the types
in equations (2.4) and equations (2.6), deriva-
tives of the Bessel functions can be expressed
in terms of functions of the zeroth and first
orders. The frequency determinants for n=0
(axisymmetric), n=1 (one diametral node), and
n=2 (two diametral nodes) are given below
(ref. 2.6).

TABLE 2.16.—Axisymmetric Frequency Parameters for Annular Plates; v=1/3; bja=0.5

Boundary wayp/D
conditions ®
Defiection function W}
Exact Rayleigh-
re=g r=b solution Ritz
solution

C C All—(r/bY*P1—(r/a)?] In (r/a) -+ B{1— (r/b)2R[1—(r/a)?P__ _________ 89. 30 86. 42
C 88 A= (/)1 —(rfa)t] In (rla) + B{1—(r/b)¥ 1 —(rfa)P____________ 64. 06 65. 17
C F All—(r/a))In (rla) +Bll—(rl@)?® .. 17.51 17. 56
S8 C Al —(r/b)?F In (r/a)+ B[1— (r/BY* PRI — (rla)?) . _ o ___ 59. 91 61.81
SS SS Al— (/b)) In (r/a)+ Bl — /b)Yl —(r/a)®}_ - . __ 40. 01 43.19
S8 ¥ A In (r/a) 4 Bil— (r/a)2)+C{r/a) 1 — (r/a)®} . o __ 5.040 5. 062
F C Al— (/B In (/b)) +BI1— (/b)Y P . 13. 05 13. 59
F S8 A ln (#/b) +B[1— (/)] +Cr/a) L — (r/b)?)- - 4. 060 4.084

s C, clamped; S8, simply supported; F, free.

For n=0,
Jo(N) Yo(n)
Ji(N) (V)
o, oa)) Y, o{aN)
J] (ak) Yl(a)\)

where a=b/a.

Iy Ko™
—LONy KM |,
Io(Gﬂ)\) Ko(ak) -

—Li{ad)  Ki(aN)
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For n=1,
J1(N) Yi(N) I\ K\
Jo(N) Yoy I,(N =Ko | _ 0
Jl((IX) Yl(a)\) Il(a)\) KI(QX)
Jo(aN) Yo(aN) Io(aN) —Ky(a))
For n=2,
O T LR —EKEN-3E0)
VSIS A L) —E) .
Jiad)  Yolah) —Io(a)\)—}—%‘fl(a)\) —Ko(a)\)—o%\-Kl(a)\)
Ji(ah) Yi(ar) Ii(aM) —K,(er)

Fundamental roots for these three frequency equations are given in table 2.17.

TaBLE 2.17.—Values of N=wa?/p/D for a Clamped, Clamped Annulus

A2 for values of bf/a of—

n

0.1 0.2 0.3 ‘ 0.4 ) 0.5 ‘ 0.6
1 U S 27.25 | ____. 45. 36 62. 33 89.30 | ___________
) RSP 28.84 36.23 | ... 62.92 |____________ 108. 16
e 36. 609 41.796 | __________ 66.406 |____________ 123. 766

These results are plotied in figure 2.14, along
with the eigenvalues for the second mode of
n=0 taken from reference 2.6. Extrapolations
are shown as dashed lines as they were proposed
in reference 2.42. Note that for b/a=0 accurate
values are given in the section entitled “Plates
Clamped at Center With Various Conditions
on Contour” (2.1.6).

A more comprehensive set of results is given
in table 2.18 (see ref. 2.46).

Theoretical and experimental results for
0=<b/a<0.5 are given for the first three mode
shapes in reference 2.48. Additional informa-
tion is given in table 2.16.

2.2.2 Annvlar Plates Clamped on Outside and
Simply Supported on Inside

The case of plates clamped on the outside
and simply supported on the inside is not dis-
cussed in reference 2.6. Fundamental eigen-
values from reference 2.42 are given in tabie
2.19 and are plotted in figure 2.15. Accurate

[
aky

FiGUre 2.14.—Values of A= (pu?/D)'4a for a clamped,
clamped annulus. (After refs. 2.6 and 2.42)

values for b/a=0 are given in the section en-
titled ‘“Plates Clamped at Center With Various
Conditions on Contour” (2.1.6). Additional
information is given in table 2.16.
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TasLe 2.19—Values of \N'=wa%/p/D for a
Clamped, Simply Supported Annulus; v=1/3

A2 for values of b/a of—
s n
0.1 0.2 0.3 0.4 0.5 0.6
AT /IV

ﬂ/ / b 0___] 22.61 | 26.57 | 33.66 | 44.89 | 64.06 | 99.16

6 Py - 1.0 25,20} 29.11 |_______ 47.09 |__.____ 98. 01
je—a 2_..135.39 | 37.54 |_______ 51.81 |_______ 104. 45
-~ =0
Y S—
————r/

% C. 02 03 04 05 06 Or 08

§

Fieure 2.15.—Values of A= (pw?/D) /4g for a clamped,
simply supported annulus; »=1/3. (After ref. 2.42)

TaBLE 2.18.—Frequency Parameters wa’/p/D
Jor a Clamped, Clamped Annular Plate

A more comprehensive set of results is given
in table 2.20 (see ref. 2.46).

TABLE 2.20.—Frequency Parameters wa®/p/D
for a Clamped, Simply Supported Annular Plate

wazmﬁ for values of bfa of— wa"’\/p/_D for values of b/a of—
n 8 n 8
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
O____._ 0 27.3 45.2 89.2 248 2237 Q 0 22. 6 33.7 63.9 175 1550
) 0 28. 4 46. 6 90. 2 249 2238 i Q 25.1 35.8 65.4 175 1551
2 . 0 36.7 51.0 93.3 251 |______ 2 0 35.4 42. 8 70.0 178 1553
[ S 0 51.2 60. 0 99. 0 256 2243 3 g 51.0 54.7 78.1 185 1558
[ 1 75.3 | 125 246 686 6167 ] 1 65.6 | 104 202 558 5004
i I 1 78.6 | 127 248 686 6167 1 1 70.5 | 107 203 560 5004
2 . 1 90.5 | 134 253 689 |____._. pA 1 86.7 | 116 210 563 | 5007
L I 1112 145 259 694 6174 3 1 111.0 | 130 218 570 5012

2.2.3 Annular Plates Clamped on Qutside and Free on Inside

The frequency determinants for n=0, 1, and 2 taken from reference 2.45 for plates clamped
on the outside and free on the inside are as follows:

For n=0,
Jo(d) Yo(\) I,(\) K,(»
Ji(N) Y, (N LN —K,(\) —0
Ji(a)) Yi(aN) Ii(a)) — K (a)) -
Jo(ad) —ZolaN) Io(aN)+AILL(al) Ky(aN)+BK (a))
where
2(1—y) 2(1—yp)
A=—=3 B==x
Forn=1,
Jo(N) Yo(N) I,(N) K,(\)
Ji(N) Yi(») L) —~K:(\) —0
—Ji(en) —Yi(ad) CJo{ar)+ DI (a)) —K;(a)) -
Jo(aN) Yo(ar) BJy(aX)+AL{ar) Ky{an)+BK (o))
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where (1—») 4(1—») 2(1—v») 4(1—»)
8(1—v» Y1 ¢ St 4 __2U=y — —v
A="50y B="toy T a D=1+
For n=2,
Ji(N) Yi(n) L —Ki())
PRI 0 L AV N “rRM-KMN |
A A =0
Jola)) Yolar) A*I (o)) —B*I{(a)) A*Ky(aX)+B*K,(a\)
J] (a)\) Yl (a)\) 0]0((1)\) —DIl (a)\) OKo(ak) +DK1 (a)\)
where N N 3t
" _a\ 3+ T _o\ 3+
A*=1—-AC, A=—%=' B*=B—AD, B=7+33
O 48(1—v)ak D_12(1—v)[(7+u)+(a)\)2}—(a)\)4
T12(1~p)*—(e)* - 12(1—p)*—(ar)?

Eigenvalues from reference 2.42 are given in table 2.21 and figure 2.16. Results for b/a=0
are also given in the section entitled “Completely Free Plates” (2.1.3).

TaBLE 2.21.—Values of N=wa%/p/D for a Clamped, Free Annulus; v=1/3

A2 for values of b/a of—
n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
O .. 10. 24 10. 18 10. 34 11.37 13. 54 17. 51 25. 60 42.38 85. 32
| SR 21.25 21.17 20.48 | _______ 19. 80 21.76 28. 52 51.12 {________
R 34.88 | 34.52{ 33.86 |.______. 31.34 |._____._ 36.60 |__..__.. 72.17

Numerical problems make it difficult to evaluate the frequency determinant as bja—1.
Reference 2.43 gives an approximate value of A=15 for /a=0.6. Additional information appears
in table 2.16.

A more comprehensive set of results is given in table 2.22 (see ref. 2.46).

TAaBLE 2.22.—Frequency Parameters wa%/p/D for a Clamped, Free Annular Plate

wa? /D for values of b/a of—
n 8
0.1 0.3 0.5 0.7 0.9
0 0 10.2 1.4 17.7 43.1 360
1 0 21.1 19.5 22.0 45.3 362
2 0 34.5 32.5 32.0 51.5 365
3 0 51.0 49.1 45.8 61.3 370
0 i 38.5 51.7 93.8 253 2218
1 1 60.0 59. 8 97.3 2564 2220
2 1 83.4 79.0 108.0 259 2225
0 2 90. 4 132.0 253.¢ 592 5183
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TaBLE 2.23.—Values of N?=wa%/p/D for a Simply Supported, Clamped Annulus; v=1/3

22 for values of bja of—
n
0.1 0.2 0.3 0.4 0.5 0.6
[ PP 17. 85 22.79 30. 05 41. 23 59. 91 95, 16
) 19. 44 24.32 | .. __. 42.56 |____________ 96. 67
D e 28. 25 31.08 |- . 46.81 ____________ 98. 84

92.9.4 Annvlar Plates Simply Supported on Outside and Clamped on inside

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for plates simply
supported on the outside and clamped on the inside are as follows:

For n=0,
JoN)  Told) I, KN I
0T LML)~ KW —K)|_
L o) Yolar) To(aN) Ky(a))
@)  Tie)  —Iad) Ki(ah)
For n=1, 7
L) T L K\
2\ 2\
TN V) IS0 —KM) -1 K|
Joad)  Yoled) Ii(a) —Ki()
J 1(0‘)\) Yl(a)\) I 1(‘2)‘) Kx(a)‘) 'g
For n=2,
TN T AN L0) — AR - K
SN V) (BLM-ALK)  —{BEMW—AKWN) |_
Ji{aN) Y (o)) Ii(aN) —K (o)
Jolead)  Fyad) -—Io(a)\)-}-a%l}(a)\) —Ko(ax)—o% Ky(on)
where
5— 3—v
A=1=, B=i5

Eigenvalues from reference 2.42 are given in table 2.23 and figure 2.17. Eigenvalues for the
second mode of n=0, taken from reference 2.6, are also given in figure 2.17. Additional infor-
mation appears in table 2.16.
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o 7 10
IR
1]
] Y i .
Y, y4
8 [ s=|
]
/ 8
! /
/ 7
A6
— /
ns2 A
5 // 6
. b n / a-—]
n=| - - _/ o
4 — L nl
3 4 ¢ ° / n-g ‘
a4 —»’,ft/ = b=
20 [eX] 02 ©3 04 05 06 07 08B 09 [X¢]
8 3
0 [oA] 0.2 0.3 05 0.6 07 0.8

Ficure 2.16.—Values of Z=(pw?/D)'/4a for & clamped,

free annulus; »=1/3. (After ref. 2.42)

o Q

FI1GURE 2.17.—Values of A= (pw?/D)/4¢ for a simply

supported,

2.42)

clamped annulus; »=1/3. (After ref.

A more comprehensive set of results is given in table 2.24 (see ref. 2.46).

TaBLE 2.24.—Frequency Parameters wa/p/D for a Simply Supported, Clamped Annular Plate

wa?p/D for values of ba of—
n s
0.1 0.3 0.5 0.7 0.9
0 0 17. 8 29.9 59.8 168 1535
1 0 19.0 31. 4 61.0 170 1536
2 0 26. 8 36. 2 64.6 172 1538
3 0 40.0 45. 4 71.0 177 1541
0 1 60. 1 100 198 552 4989
1 1 62. 8 102 200 553 4989
2 1 74. 7 109 205 557 4992
3 1 95. 3 120 211 563 4997

2.2.5 Annular Plates Simply Supported on Both Edges
The case of annular plates simply supported on both edges is not discussed in reference 2.6.
Eigenvalues from reference 2.42 are given in table 2.25 and figure 2.18.

TaBLE 2.25.—Values of N=wa%/p/D for an Annular Plate Simply Supported on Both Edges; v=1/3

A2 for values of b/a of—
n
0.1 } 0.2 ! 0.3 1 0.4 6.5 0.6 0.7
|
O e 14. 44 17. 39 21. 31 28. 25 40. 61 62. 09 110. 67
S 16, 77 19.19 | _____ 30.00 |_____.___. 62.41 |[_._____._
2 e 25. 97 ‘ 27.55 | .. 36.14 |_______.___ 68.41 |___.______
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A more comprehensive set of results is given in table 2.26 (see ref. 2.46).

TABLE 2.26.—Frequency Parameters wa%/p/D for a Simply Supported, Simply Supported Annular

Plate
waty p/—D for values of b/a of—
n s
0.1 0.3 0.5 0.7 0.9
0 0 14.5 21.1 40.0 110 988
i ] 16. 7 23.3 41. 8 112 988
2 0 25. 9 30.2 47. 1 116 993
3 0 40. 0 42. 0 56. 0 122 998
0 i 51. 7 81. 8 159 439 3948
i 1 56. 5 84. 6 161 441 3948
2 1 7L 7 933 167 444 3952
3 1 94, 7 108 177 453 3958

Theoretical and experimental results for  shapes in reference 2.48. Additional informa-
0=b/a<0.5 are given for the first three mode  tion appears in table 2.16.

2.2.6 Annular Plates Simply Supported on Outside and Free on Inside
The frequency determinants for n=0, 1, and 2 taken from reference 2.45 are as follows:

For n=0,
Jo(N) YoM Io(3) Ky(n)
—Ji(N) ot 10V LN +ALMN —K, (N +AK (M) _o
Ji(a) Yi(aN) Ii(aN) — K, (o)
—Jo(aN) —Zola) Iy(ary —BI {(an) Ky(a))+BK (a))
where
A=’"12—)\u B =2_(%V)'
For n=1,
Jolh) Yoy I(\)—EIL(» — KN —EEK ()
TN 7,00 L KN 0
—oJi{a)) — Y (aN) Cl(ar) +DI(ah) — CKy(aX) +DK, (o))
Jo(ad) Yi(ar) BIy(a))+AL{e)) —BKy(ar) +-AK {a))
where
=—88;;3”) B=—1+‘—1%)‘—)—f) o=-2122) D=1+4§i;)2”> E=2
For n=2,
Ji(N) Yi(y) EL(\N—FI(A) —EK,(\)— FK,(»)
Jo(A) YolN) GL (N —EI(\) —GK,(\)—EEK (N

Jo(a) Yolar A*Io(oN)—B*I,(ar) A*K (o)) +B*K (a)) B
Ji(ar) Yi{aM) CIy(ar) —DI (o) CKo(aN) +DK (o))



CIRCULAR PLATES 27

where 3 A 3 A 48(1—p)ar
+v, « 4+, o \ 8 v)al
*—1—-AC B*=B—AD A=— % +I B—_——Z(x +—4 0—_—'——-—12(1 mE: (an)E
12(1—)[(7-+2) 4 (aA)T] — (ad)* 5—, N 43—y

12(1— 1) — (aM)* 1— i— N—y

Eigenvalues from reference 2.42 are given in table 2.27 and figure 2.19. Values for b/a=0
are also given in section 2.1.3. Additional information appears in table 2.16. A more compre-
hensive set of results is given in table 2.28 (from ref. 2.46).

TABLE 2.27.—Values of N2==wa%/p/D for a Simply Supported, Free Annulus; v=1/3

A for values of bja of—
n
0 0.1 ‘ 0.2 0.3 | 0.4 0.5 0.6 0.7 T 0.8 0.9
| JUIIUURN ST 4933 | 4726 | 4.654 | 4752 5040 | 5664 6.864 | 9 431 17. 81
) D 13.93 | 13. 91 12260 ___..___ 11.66 |._.___. 12.27 ... __ 1705 | ______
2 e 25. 65 | 25. 43 24.97 | ____._._ 23.09 |___...__ 22.20 |o..._.__ 29.92 |___.____

TABLE 2.28.—Frequency Parameters wa/p/D for a Simply Supported, Free Annular Plate

n . wa?y p{D for values of bfa of—
0.1 0.3 0.5 0.7 0.9
0 0 4. 86 4. 66 5. 07 6. 93 17.7
1 0 13. 8 12. 8 11.6 3.3 29.7
2 0 25. 4 24. 1 22.3 24. 3 512
3 0 40.0 38. 8 35. 7 37.2 74. 5
0 1 29. 4 37.0 65. 8 175 1550
i 1 48. 0 45. 8 69. 9 178 1553
2 1 69. 2 65. 1 81.1 185 1558
0 2 74. 8 107 203 558 5004
10
7
i
]
Il
2 7,
J
Y
8 /4 8 7
I
'
7 // 7 j=—a II i
* / & b // 'Il’
6 L/ Ky
55 7/ . ° — n=2 // /
4 —//‘ =0 o—‘! T —“”/ (£1¢]
1 3 /
3 2 =~

g2 03 04 05 06 07 08 0S8 1.C
2
Q

4] o1 .2 03

[o]
nb‘A
o
wn
o
o
o
~
o
[+:]
O
O

F16URE 2.18.—Values of A= (pw?/D)!/4g for a simply sup- Fiaore 2.19.—Values of A= {(pw?/D)1/4a for a simply
ported, simply supported annulus; »=1/3. (After supported, free annulus; »=1/3. (After ref. 2.42)
ref. 2.42) '
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2.2.7 Annvlar Plates Free on Outside and Clamped on Inside

The frequency determinants for n=0, 1, 2 taken from reference 2.6 are as follows:

For n=0,
a0 T —L+ 8 2r0) k-2 g0
Ji(N) Y.(\) L) —K,(\) =0
Jg(d}\) Y()(C{)\) Io(a)\) Kg(a)\)
AN Y (a\) —Ii{a}) Ki(eN)
For n=1,
[ Ty ALm-BLo)  —Em-2E 0y
Ji(d) Y.(\) 5L\ —Ki(\) =0
Jo(aN) Y o(aN) Iy(eN) Ky(a)
Ji(ar) Yi{ar) I{e) Ki{an)
where
A=_1+4(1>‘;v) B=8(1)\:V)
For n=2,
Jo(N) Yon) (1—4ABMNI(\)—DIL(N) (1—44BN) Ki(\)+DKi(N)
Ji(A) Y. 4BN (M) —CL(N) 4BAK(\)+CK, (M)
Tiad)  Yol@d)  —IfaN)+ = L) —EaN)— = Ky(a)
Jdad) Vi) JAEN —Ki{ah)
where
___Z\__3+1/ _12(0—) 121 =) (74w AN —2¢ _A 3_—H_
=i~ Poiosw T muo—w D=3+ —4C

Eigenvalues from reference 2.42 are given in table 2.29 and figure 2.20. Accurate values for

bja=0 are given in the section entitled “‘Plates Clamped at Center With Various Conditions
on Contour” (2.1.6).

TaBLE 2.29.—Values of N=wa?y/p/D for a Free, Clamped Annulus; »=1/3

22 for values of b/a of—
n
0.1 l 0.2 l 0.2 0.4 Q.5 I 0.6 l 0.7 0.8
O . 4. 235 5. 244 6. 739 7. 036 13. 05 20. 63 36. 60 81. 45
| 3. 482 4.814 |__________ 9.096 |__________ 20.93 | __._ 45. 09
. 5. 499 | 6.345 .. ________ 10.37 | ________ I 23.63 |- 67. 65
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A more comprehensive set of results is given in table 2.30 (see ref. 2.46).

29

TABLE 2.30.—Frequency Parameters wa®+/p/D for a Free, Clamped Annular Plate

waVp/D for values of bja of—
n s
0.1 0.3 0.5 0.7 0.9
1 0 3. 14 6. 33 13. 3 37.5 345
0 0 4, 23 6. 66 13.0 37.0 51.5
2 0 5. 62 7. 96 14. 7 39. 3 347
3 0 12. 4 13. 27 i8. 5 42. 6 352
0 1 25. 3 42. 6 85.1 239 970
1 1 27.3 44. 6 86. 7 241 2189
2 1 37.0 50. 9 91. 7 246 2194
3 1 53. 2 62. 1 100 253 2200

Additional data for this case are available from the work of Southwell (ref. 2.37), who saved
considerable effort in computation of the Bessel functions by assuming arguments of A and then
finding the b/a ratios to which these correspond. These additional data are presented in table 2.31
for »=0.3. Results appear also in table 2.16. This problem was also discussed in reference 2.15.

TasLE 2.31.—Additional Values of N2=wa%/p/D for a Free, Clamped Annulus; v=0.3

n=_0 n=1 n=2 n=3
bla A2 bla by bfa a2 bla a2
0. 276 6. 25 0. 060 2. 82 0. 186 6. 25 0. 43 16. 0

642 25.0 . 397 9. 00 . 349 9. 00 . 59 25

840 81.0 . 603 21.2 . 522 16. 0 .71 49

_________________________ . 634 25.0 . 769 640 .82 100
_________________________ L1771 64. 0 .81 100 S FER R
_________________________ . 827 121. 0 S FE SRS PN O

2.2.8 Annular Plates Free on Outside and Simply Supported on inside

The case of annular plates free on the outside and simply supported on the inside is not discussed
in reference 2.6. Eigenvalues from reference 2.42 are given in table 2.32 and figure 2.21. Additional
information appears in table 2.16.

TasLE 2.32.—Values of N*=wa%/p/D for & Free, Simply Supported Annulus; v=1/3

2 for values of b/a of—

n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
O . 3.516 | 3.312 3.378 | 3.610 ] 4060 | 4 951 6. 101 8.779 18. 92
l 2. 403 2.816 | _______ 3.940 |_______. 6.027 |___.__.__ 1286 | _.-_-
SO 5. 313 5.513 . ____... 6.620 |.__..___ 9.853 |________ 19.85 j_o-----
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Ficure 2.20.—Values of A= {(pw?/D)/%a for a free,
clamped annulus; »=1/3. (After ref. 2.42)

supported annulus; v=1/3. (After ref. 2.42)

A more comprehensive set of results is given in table 2.33 (see ref. 2.46).

TABLE 2.33.—Frequency Parameters wa’/p/D for
a Free, Simply Supported Annular Plate

wa*vp/D for values of b/a of—
n 8

0.1 0.3 0.5 0.7 0.9
1 0! 2.30| 3.32| 4.86 8.34 25.9
6 0 3.45 3.42 | 4.11 6.18 17.2
2 6! 5.42 6.08 1 7.98 13.4 42. 6
3 0 12.4 12. 6 14.0 20.5 61.4
6 11]20.8 31.6 | 61.6 176 1535
1 11241 34.5 63.3 172 1536
2 1358 |43.0 | 69.7 177 1541
3 11530 |56.7 | 803 185 1548

2.2.9 Annular Plates Free on Both Edges

The frequency determinants for n=0, 1, and 2 taken from reference 2.6 for annular plates free

on both edges are as follows:

For n=0,
Jo(N) Yo\ — I, (N +ALK) —K,(\—A4AK (N
Ji(\) Yi(N) L —Ki(\)
Jo(@d)  Yolad)  —IolaN+BL(e))  —Ko(aN—BEi(ad)|
Ji(aN) Yi(aN) Ii{a)) —K;(a))
where
A=2(1>‘ v) B=2<1)\ v)
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For n=1,
JN TN (—1H5A) L —AIm) —(—1434) K- 4K
Jo v Fane-(1+54) 10 a0 -(1454) K0 _
Jo@n)  Yold) (—1+% B)Io(ax)-—-BIl(ak) —(—1+~—B)Ko(a>\) BE (o)
s T D pre-(1+2B)n@ [~ DL Br@)-(1+5 B) K@) |

where (1) (1=
_8(1—v _8(1—»
A= A3 B= (aN)?
For n=2,
Jo(A) Yo(N) AI(N)—BL(N) AK(\) +BK,(N)
Ji(M) rm CI,(\)—DL(») CK.N+DE(N) |
Jo(al) Yo(aN) A*Iy(a)) —B*I (a)) A*K(ar) +B*K,(a))
Jl(a)\) Y;(a)\) O*Io(a)\) —_D*Il(ak) O*Ko(ak) —}—D*Kl(a)\)
where
A 3+v>0 3+v A_34n\p oo 48—
\4 4 20\ T12(1 =)=\
_12(1—») (7+v+)\2)—-)\4 _q_fax 3+ v) T Y 3+V>
D=—11 =5\ =17~ Br=2toa 77/ 0"
O*— 48(1—v) () D 120 =) [7+v+(eA)?]—(ar)*
T120=)— ()’ 12(01—2)—(\)*
Eigenvalues from reference 2.42 are given in o1 7
table 2.34 for the lowest root of n=2. The bie- /, }
lowest roots of n=0 and n=1 are rigid body - 5:—/ /
translation and rotation modes, respectively. 8 NN
Other eigenvalues are plotted in figure 2.22 as {/ / /
taken from reference 2.6. Labels near the 7 /"
ordinate identify roots for b/a=0 given in the ‘/
section entitled ‘“Completely Free Plates” 8 O 02 //
(2.1.3). xsb—L //f
=0,n=
4%'\ s=i,n=i /
i T /
3's=0.n-3 s=&
o
2 L -
i
0

G 0! 02 03 04 05 06 07 08 09 IO

ol

Fi1gURE 2.22.—Values of A= (pw?/D)'/4q for a free, free
annulus; »=1/3. (After ref. 2.6)
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TaBLE 2.34.—Values of N=ws/p/D for an Annular Plate Free on Both Edges; v=1/3

2 for values of b/a of—

0.1 0.2 0.3

0.4 0.5 0.6 0.7 0.8 0.9

5. 203 5. 053 | 4.822

4,567 | 4.203 | 3.85 | 3.519 | 3.200 2. 890

TaBLE 2.35.—Frequency Parameters waZ/p/D
for a Free, Free Annular Plate

wa*Vp/D for values of b/a of—
n ]
0.1 0.3 0.5 0.7 0.9

2 0 5.30 | 4.91 4.28 3. 57 2.94
3 0] 12.4 12.26 | 11.4 9. 86 8.14
Y 1 8.77 8.36 | 9.32 13.2 34.9
1 1]205 18. 3 17.2 22.0 55.7
2 1134.9 |33.0 311 37.8 93.8
3 1:53.0 | 51.0 | 47.4 55.7 135

0 2 38.2 50.4 92.3 | 251 2238

1 2]59.0 | 538.8 |96.3 253 2240

A more comprehensive set of results is given in
table 2.35 (see ref. 2.46).

2.2.10 Annvlar Plates Clamped on Outside With
Rigid Mass on Inside

Considering only axisymmetric vibrations

the boundary conditions for annular plates

clamped on the outside with a rigid mass on the
inside (fig. 2.23) are

_ow _ow .
'EI)(@, 8, é)*a {a’x 8, t)“‘a (b; g, t)—‘O
2 (2.37)
%bVT(by 07 t)=MW’ (by 0’ t)

- —»

///////0#

¢

F1cURE 2.23.—Annular plate elamped on outside, rigid
mass on inside.

LLlll
N

/224

where M is the total mass of the rigid insert. In
the general case the condition of zero slope at
the junction with the rigid mass would be
replaced by an equation of motion relating the
integral of the components of torque along the
edge r=) about a diametral axis to the product
of the mass moment of inertia and the rotational
acceleration about the axis.

Letting n=0 in equation (1.18) and substi-
tuting into equation (2.37) result in a fourth-
order frequency determinant. Expanding this
by making use of the recursion formulas for
derivatives of Bessel functions yields a char-
acteristic equation which was given by
Handelman and Cohen (ref. 2.49):

(oW Li(N) +J1(N) Lo\ AT 1 (Ae)
+ary[Y1(Aa) Ko(Ae) — Ki(Aa) Yo (Aa) 1D
+ (JoW Ey(N) — Ko J: (MM (M) Y1 (Aer)
— aNy[Ty(Ae) Yo(ha) + To(Ae) Yi(Ae)]})
F (Yo N LN + L) Ty (NI4T (N K (V)
+ady[Ji(Aa) Ko(A) — Ki(Aa) Jo(Aa)]})
+ (YoM E: (W) — KoM Y1(N)]
{—arJi(0e) [;(A@) + ary[J1(Aa) Ip(Aa)

-Hlm‘).):,()wz)]})=4?Y

(2.38)
where
A= (w?p/D) a (2.39)
and
a=bla  vy=p'lp

where p’ is the mass per unit area of the rigid,
inner mass.

Equation {2.38) was solved for the funds-
mental root A for two values of a and y=2 and
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10. These results are shown as small circles
in figure 2.24. Because of the complexity of
equation (2.38) its numerical evaluation was
limited in reference 2.49 and, in its place, a
minimal principle was used to obtain approxi-
mate eigenvalues which are upper bounds.
These results appear as curves in figure 2.24.

In figure 2.24 it is seen that for high mass-
density ratio v there exists & ratio of radii «
for which the frequency is identical to that for
the clamped solid circular plate without central
mass. The critical values of v for which this
occurs are shown in figure 2.25 as s function
of a (see ref. 2.49).

REFERENCES

2.1. McLacnaLAN, N.: Bessel Functions for Engineers.
Oxford Eng. Seci. Ser., Oxford Univ. Press
(London), 1948.

2.2. Anon.: Tables of the Bessel Functions of the
First Kind (Orders 0 to 135).. Harvard Univ.
Press (Cambridge, Mass.), 1947.

2.3. AIREY, J.: The Vibration of Circular Plates and
Their Relation:: to Bessel Functions. Proc.
Phys. Soe. (London), vol. 23, 1911, pp. 225-232.

2.4. BrancH, G.: Notes on Zeros of . I..(x) J.{z)
+Jari{@) I a(x)=0. Math. Tables and Other
Aids to Comput., vol. 6, no. 37, 1952, p. 58.

)
7%
8
=1
7 iV
) youn
//
s A7 7
) "
ﬁ/ 410
3 e~
2
§
o0 ol 02 03 04 05 06 07 08 09 10

a=b/a

FiGURE 2.24.—Frequency parameter A= (pw?/D)l4a
for an annular plate clamped on the outside and
having = rigid mass on the inside.

2.5. CarriNagTon, H.: The Frequencies of Vibration
of Flat Circular Plates Fixed at the Cir-
cumference. Phil. Mag., vol. 50, no. 6, 1925,
pp. 1261-1264.

2.6. GonTkEvicH, V. S.: Natural Vibrations of
Plates and Shells. A. P. Filippov, ed., Nauk.
Dumka (Kiev), 1964. (Transl. by Lockheed
Missiles & Space Co. (Sunnyvale, Calif.).)

2.7. Reip, W. P.: Free Vibrations of a Circular
Plate. J. Soc. Ind. Appl. Math,, vol. 10,
no. 4, Dec. 1962, pp. 668-674.,

2.8. Unaar, E. E.: Maximum Stresses in Beams
and Plates Vibrating at ‘Resonance. Trans.
ASME, J. Eng. Ind., vol. 84B, Feb. 1962, pp.
149-155.

2.9. Nowacki, W.: Dynamies of Elastic Systems.
John Wiley & Sous, In¢., 1963.

2.10. Fiuirpov, A. P.: Vibrations of Elastic Systems.
AN UkrSSR Press, 1956. (In Russian.)

2.11. Prescort, T.: Applied Elasticity. Dover Pub.,
Inc., 1961. (Originally published by Long-
mans, Green & Co.; 1924.)

2.12. PoissoN, S. D.: L'Equilibre et le Mouvement des
Corps Elastiques. Mem. Acad. Roy. des Sci.
de L’Inst. France, ser. 2, vol. 8, 1829, p. 357.

2.13. Scuunze, F. A.: Einige neue Methoden ziir
Bestimmung der Schwingungszahlen hochster
horbarer und unhoérbarer ‘Téne—Anwendung
auf die Téne der Galtonpfeife und die Bestim-
mung der oberen Hoérgrenze. Ann. Physik,
Bd. 24, Heft 15, 1907.

2.14. LauricELLa, G.: Sulle Vibrazioni delle Piastre
Elastiche Incastrate. Atti. Accad. Naz. Lincei,
Rend., Classe Sci. Fis., Mat. Nat., vol. 17,
ser. 5, pt. 2, 1908, pp. 193-204.

7 i

/
/
/

0 1 0.2 0.3 04 05 1) 0.7 a8

a

FreUrys 2.25.—Critical mass density ratios v..



34

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

2.24,

2.25.

2.26.

2.27.

2.28.
2.29.

2.31.

2.32.

VIBRATION

PrEIFFER, F.: Ubergang zu Systemen mit unend-
lich vielen Freiheitsgraden. Ch. 4, Handbuch
der Phys., Julius Springer (Berlin), 1928, pp.
337-402.

CouranT, F.; aAnp HiiBeErT, D.: Methods of
Mathematical Physics. Vol. I. Julius Springer
(Berlin), 1924. Interscience Publ., Inc. (New
York, N.Y.), 1953.

RAYLEIGH, Lorp: Theory of Sound. Vol. I and
vol. II. Dover Pub., 1945. (Originally pub-
lished in 1877.)

PoLya, G.; aNp SzEGO, G.: Isoperimetric In-
equalities in Mathematical Physics. Princeton
Univ. Press (Princeton, N.J.), 1951.

BopiNg, R. Y.: The Fundamental Frequencies
of a Thin Flat Circular Plate Simply Supported
Along a Circle of Arbitrary Radius. ASME
Paper no. APMW-10, J. Appl. Mech., vol. 26,
Dec. 1959, pp. 666-668.

CowweLL, R. C.; axp Harpy, H. C.: The Fre-
quencies and Nodal Systems of Circular Plates.
Phil. Mag., ser. 7, vol. 24, no. 165, Dec. 1937,
pp. 1041-1055.

WALLER, Mary D.: Vibrations of Free Circular
Plates. Proc. Phys. Soc¢. (London), vol. 50,
1938, pp. 70-76.

GrinsTED, B.: Nodal Pattern Analysis. Proc.
Inst. Mech. Eng., ser. A, vol. 166, 1952,
pp. 309-326.

Kircurorr, G.: Uber das Gleichgewicht und die
Bewegung einer elastischen Scheibe. Math.
J. (Crelle), Bd. 40, no. 5, 1850, pp. 51-58.

Woob, A. B.: An Experimental Determination of
the Frequencies of Free Circular Plates.
Proc. Phys. Soc. (London), vol. 47, no. 5,
1935, pp. 794-799.

CowweLL, R. C.; StewarT, J. K.; AND ARNETT,
H. D.: Symmetrical Sand Figures on Circular
Plates. J. Acoust. Soc. Am., vol. 12, Oct.
1940, pp. 260-265.

CoLwery, R. C.: The Vibrations of a Circular
Plate. J. Franklin Inst., vol. 213, no. 1276~
1277, 1932, pp. 373-380.

StewarT, J. K.; anp CoLwery, R. C.: The Cal-
culation of Chladni Patterns. J. Acoust. Soc.
Am., vol. 11, July 1939, pp. 147-151.

Cuuapng, E. F. F.: Die Akustik. Leipzig, 1802.

CowweLL, R. C.; StEwarT, J. K.; ANp FRIEND,
A. W.. Symmetrical Figures on Circular
Plates and Membranes. Phil. Mag., ser. 7,
vol. 27, 1939, pp. 123-128.

. TIMOSHENKO, S.; AND WoINOWSKY-KRIEGER, S.:

Theory of Plates and Shells. Second ed.,
MeGraw-Hill Book Co., Inc., 1959.
KircHEOFF, G.: Ges, Abhandl. (Leipzig), 1882, p.
259.
KanTtaaM, C. L.: Bending and Vibration of Elas-
tically Restrained Circular Plates. .J. Franklin
Inst., vol. 265, no. 6, June 1958, pp. 483-491.

OF PLATES

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

2.41.

2.42.

2.43.

2.44.

2.45.

BarTrerT, C. C.: The Vibration and Buckling of
a Circular Plate Clamped on Part of Its
Boundary and Simply Supported on the Re-
mainder. Quart. J. Mech. Appl. Math., vol.
16, pt. 4, 1963, pp. 431-440.

NosLg, BEN: The Vibration and Buckling of a
Circular Plate Clamped on Part of Its Boundary
and Simply Supported on the Remainder.
Proc. 9th Midwest. Conf. Solid and Fluid
Mech., Aug. 1965.

Nowacki, W.; anp Owuesiak, Z.: Vibration,
Buckling, and Bending of a Circular Plate
Clamped Along Part of Its Periphery and
Simply Supported on the Remaining Part.
Bull. Acad. Pol. Sei,, cl. IV, vol. 4, no. 4, 1956,
Pp. 247-258.

Nowacki, W.; aNp OLEsIAK, Z.: The Problem of
a Circular Plate Partially Clamped and Par-
tially Simply Supported Along the Periphery.
Arch. Mech. Stos., vol. 8, 1956, pp. 233-255.
(In Polish.)

SouTtEwELL, R. V.. On the Free Transverse
Vibrations of a Uniform Circular Disc Clamped
at Its Centre and on the Effect of Rotation.
Proc. Roy. Soc. (London), ser. A, vol. 101,
1922, pp. 133-153.

SAkHAROV, 1. E.: Dynamic Stiffness in the Theory
of Axisymmetric Vibrations of Circular and
Annular Plates. Izv. An SSSR, OTN, Mekh.
i Mashin., no. 5, 1959, pp. 90-98. (In Russian.)

RoBersoN, R. E.: Transverse Vibrations of a
Free Circular Plate Carrying Concentrated
Mass. J. Appl. Mech., vol. 18, no. 3, Sept.
1951, pp. 280-282,

RosersoN, R. E.: Vibrations of a Clamped
Circular Plate Carrying Concentrated Mass.
J. Appl. Mech., vol. 18, no. 4, Dec. 1951, pp.
349-352.

Tyurerin, V. V.: Flexural Oscillations of a
Circular Elastic Plate Loaded at the Center.
Akusticheskii Zhurnal, vol. 6, no. 3, July 1960,
pp. 388-391. (In Russian.)

Rasu, P. N.: Vibrations of Annular Plates. J.
Aeron. Soc. India, vol. 14, no. 2, May 1962,
pp. 37-52.

Joea-Rao, C. V.; aND PickETT, GERALD: Vibra-
tions of Plates of Irregular Shapes and Plates
With Holes. J. Aeron. Soc. India, vol. 13,
no. 3, 1961, pp. 83-88.

Joga-Rao, C. V.; anp Visavaxumar, K.: On
Admissibie Functions for Flexural Vibration
and Buckling of Annular Plates. J. Aeron.
Soc. India, vol. 15, no. 1, Feb. 1963, pp. 1-5.

Saxzarov, I. E.: Natural Vibrations Frequencies
of Annular Plates. Izv. An SSSR, OTN, no. 5,
1957, pp. 107-1106. {(In Russian.)



CIRCULAR PLATES 35

2.46. VogEL, S. M.; aND SkINNER, D. W.: Natural
Frequencies of Transversely Vibrating Uniform
Annular Plates. J. Appl. Mech., vol. 32, Dee.
1965, pp. 926-931.

2.47. Horr, W.; anp Koenig, M.: Studien iiber
Schwingungen von Kreisplatten und Ringen 1.
Z. Tech. Phys., ser. 373, Bd. 9, Heft 10, 1928,
pp. 373-382.

2.48. Kumar, T.: The Flexural Vibrations of a Square
Plate With a Central Circular Hole. Proc. 2d
Jap. Nat. Congr. Appl. Mech., 1952, pp. 339-
342.

2.49. HanpELMAN, G.; aND CoHEN, H.: On the Effects
of the Addition of Mass to Vibrating Systems.
AFOSR TN 56-387 (ASTIA Doc. No. 96045),
Sept. 1956. Also Proc. 9th Int. Congr. Appl
Mech., vol. VII, 1957, pp. 509-518.






Elliptical Plates

The elliptical boundary will be taken to be
one of the confocal ellipses of an elliptical co-
ordinate system. The semimajor and semi-
minor axes of the ellipse will be taken as a and
b, respectively (see fig. 3.1). The eccentricity
e of the ellipse is related to a and b by

e=+1—(b/a)*

For a mode shape having symmetry with
respect to both axes of the ellipse (m even) or
with respect to the minor axis (m odd), equation
(1.27) reduces to

(3.1)

@

W=m20{0m09m(£) Q)Cem(m Q)
+CrCen(t,—g)cen(n,— )] (3.2)

For mode shapes which are antisymmetric
about both axes (m even) or with respect to the
major axis of the ellipse (m odd), equation
(1.27) reduces to

W=§1[Sm6’em(s, g)sen(n, @)
+SnSen(s,—Q)sen(n,—@)] (3.3)

y

b

N

Ficure 3.1.—Elliptical plate.

Chapter 3

3.1 CLAMPED PLATES

When equation (3.2) is used and the condi-
tions of zero deflection and slope around the
boundary are applied, a characteristic de-
terminant of unbounded order is obtained.
Shibaoka (ref. 3.1) solved the problem of
clamped elliptical plates by beginning with the
element in the upper left-hand corner and tak-
ing a series of finite determinants containing
that element. As successive determinants were
taken, convergence to a lowest root was es-
tablished. Table 3.1 shows the fundamental
roots obtained for three values of /b and
corresponding eccentricities. The convergence
is slower for large values of a/b. Only third-
order determinants were required to establish
the convergence to the number of figures given
for a/b=1.25 and 2.00, but a fourth-order
determinant was required for a/b=3.00.

TasLe 3.1.—Values of N=wa?y/p/D for a

Clamped Elliptical Plate
a/b € A= wa? Jm)
125 . 0. 600 i3.1
200 ___ . 866 27.5
300 ___.____ . 943 56.9

In reference 3.1 an expansion formula is also
derived for elliptical plates of small eccentricity.
Itis

A={pw?D) " g=3.1961-+0.7991*-+0.7892¢!
(3.4)

where 3.1961 is the fundamental eigenvalue for
a clamped circular plate of radius a.
The problem was also solved by using the
Rayleigh technique (ref. 3.1). A function
37
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x?

y2 2
W=Wo(1——?——p (3.5)

was chosen to satisfy the boundary conditions
exactly. The Rayleigh quotient gives the
approximate frequency formula

w=$\/4o[1+§(%>2+(%>4](D/p) (3.6)

The Galerkin method and a two-term de-
flection function

W=A1(§+3:—1)2+A2(§+g—2—1>3 (3.7)

were also used to solve the problem (ref. 3.2).
By use of equation (3.7), the eigenvalues are
found to be

x:=pwfa4/1)=39.218[1+§(%>2+(%>4] (3.8)
and

)\‘§=pw§a,‘*/D=129.18[1+§<%)2+<%>4] (3.9)

Values of A? from equation (3.8) for various
ratios of a/b are given in table 3.2.

TaBLE 3.2.—Approzimate Values of NXi= wa2vp/D
for a Clamped Elliptical Plate

a/b a2

R 10. 217
R 11. 314
1 e 12. 566
1.5 e 17. 025
2.0 . 27. 748
3.0 el .. 58. 693
5.0 _____._ 158, 85

Comparing equations (3.8) and (3.6) with table
3.1, it is seen that equation (3.8) gives results
only slightly more accurate than those of equa-
tion (3.6) and the ratio of frequencies obtained
from equations (3.6) and (3.8) does not vary
with a/b.

In reference 3.3 the differential equation
{eq. (1.4)) expressed in terms of elliptical co-
ordinates (eq. (1.20)) is transformed into a
form yielding a solution in “epicycloidal tran-
scendental functions.” The characteristic de-
terminant for the clamped case is presented,
but not evaluated.

In reference 3.4 a minimal energy method is
used with a deflection function of the form

W(r,8)=1—p*)} A1+ As1p*+ Asp*+ (Asp™+ Aup*)
cos 20+ Agp* cos 46]  (3.10)

where p and 6 are related to rectangular co-
ordinates by the parametric equations

z=pcosf
y=g psing
to obtain fundamental frequency parameters.
Results are given in table 3.3.
The problem was also formulated in terms of

Mathieu functions and discussed in reference
3.5. It is also discussed in reference 3.6.

(3.11)

3.2 FREE PLATES

Experimental resuits for free elliptical brass
plates having a/b ratios of 2 and 1.25 were ob-
tained by Waller (ref. 3.7). Table 3.4 gives
ratios of frequencies for a¢/b=1.98 relative to
the fundamental frequency. The fundamental
frequency upon which the table is based is
given in reference 3.7 as 438 cycles per second

TarLE 3.3.—Approximate Frequency Parameters N = wa’y/p/D for a Clamped Elliptical Plate

bla ! 1.0 0.9 0.8 0.7

0.6 0.5 0.4 0.3 0.2 l 0.1

10.216 | 11. 443 | 13.229 | 15. 928

20. 195 | 27. 378 | 40. 649 | 69. 163 | 140. 88 583. 10
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TABLE 3.4.—FEazperimentally Delermined Eela-
twe Frequencies for a Free Elliptical Brass
Plate; afb=1.98

TasLE 3.5.—FEzperimentally Determined Rela-
twe Frequencies for a Free Elliptical Brass
Plate; afb=1.24

Frequency for value of n of—

Frequency for value of n of—

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7

L S, [RUUUIU 1 2.58 147 7.3 10 O e i 2.45 14.28 16.66 19.39 | 13

) R I 1.77 | 3.27 | 5.68 | 8.29 | 11 R ) S 1.07 } 2.59 | 4.34 6.8 (9.6 |...__ o

2._..14.2516.57 | 9.43 |12.6 |._____|j.--__. - 2..12.03 139967110 _____ | ___f_.-__ .-

3._._[10.6 |14 || feoa|ooaol ———- 3._| 4.42 1 7.41 (10.7 (14 || |oooas -

4___ 117 22 e R 4.1 9.01 )12 e .
5_.014 | e e I

for a brass plate with a major axis of 4.99

inches, & minor axis of 2.52 inches, and a thick-
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ness of 0.0638 inch. The mode indicators s
and 7 indicate the number of nodal lines run-
ning approximately in the directions of the
major and minor axes, respectively. This is
tlustrated in figure 3.2, where node patterns
corresponding to some of the frequencies in
table 3.4 are shown.
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Rectangular Plates

Altogether there are 21 combinations of
simple boundary conditions (i.e., either clamped
(C), simply supported (SS), or free (F)) for
rectangular plates. Frequency parameters are
expressed in terms of wa?/p/D, where a is a
length dimension, and de not depend upon
Poisson’s ratio unless at least one of the edges
of the plate is free. However, because D
contains », the frequencies themselves depend
upon » for all cases.

Warburton (ref. 4.1) presented the first com-
prehensive collection of solutions for rectangular
plates. He used the Rayleigh method with
deflection functions as the product of beam
functions; that is,

W(z,y)=X()Y(y) (4.1)

where X(z) and Y(y) are chosen as the funda-
mental mode shapes of beams having the
boundary conditions of the plate. This choice
of functions then exactly satisfies all boundary
conditions for the plate, except in the case of
the free edge, where the shear condition is
approximately satisfied. The six possible dis-
tinct sets of boundary conditions along the
edges z=0 and z=qa are satisfied by the
following mode shapes:

{a) Simply Supported at z==0 and z=a:

X(x):sin(ﬂi‘i‘)—”’c (m=2,3,4,...) (4.2)

(8) Clamped at 2=0 and z=a:

. z 1\, sin(v,/2) z 1
X(x)—cos'yl(a 2>+s_*—inh (‘;1 ) cosh'yl<a 3

(m=2,4,6,...) (4.3)
where the values of v, are obtained as roots of
tan (y,/2) +tanh (v,/2)=0 (44

308-337 0—70———+4

Chapter 4

and

e z 1\ _ sin(ys/2) (x 1
X(x)"s‘n"‘*’(a 5) " sinh (vy2) SR 72\ g3

(m=3,5,7,...) (4.5)
where the values of v, are obtained as roots of
tan (v2/2)—tanh (y,/2)=0 (4.6)
{¢) Free at =0 and z=a:

X(z)=1 (m=0) 4.7)
X@)=1-2  (m=1) (4.8)

z_1\_ sin(y,/2) (2_1

X(x)—-cosvl( 3) sk (72/2) cosh vy, 73
(m=2,4,6,...) (4.9

and

sin (v5/2) (_9{__1

X(x)—s1n72(a 2>+smh (72/2) sinh-y, a 2
(m=3,5,7,...) (4.10)

with v; and v; as defined in equations {4.4)
and (4.6).
(d) Clamped at z=0 and Free at z=a:

X(z)-—cos— cosh ¥ ’3”
sin y;—sinh vy, 'yaz)
+<cos ys—cosh %X in 77— sinh
(m=1,2, 3,...) (411)
where
cos v3 cosh y;=—1 4.12)

(¢) Clamped at =0 and Simply Supported
8t r=a:

sin (v/2)
X(z)=sin7, (20,_— " sinh (72/2)
sinh'yl;(%—i {(m=2,3,4,---) (4.13)
41
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with v; as defined in equation (4.6).
(f) Free at =0 and Simply Supported

at z=a:

X(x)=1—§

sin (v,/2)

(m=1)

. r 1
X(Z) =8I Y2 <2a 2>+sinh (72/2)

sinhw(%;—%) (m=2,3,4,---) (4.15)

with v: as defined in equation (4.6).

The functions Y(y) are similarly chosen by
the conditions at y=0 and y=a by replacing
z by ¥, a by b, and m by n in equations (4.2) to

(4.15).

(4.14)

The indicators n and m are seen to be

the number of nodal lines lying in the z- and
y-directions, respectively, including the bound-

aries as nodal lines, except when the boundary

is free.
The frequency v is given by reference 4.1 as

-2p{coly
+2<%>2{VH,HV+(1—V)J,J,]} (4.16)

where G, H,, and J, are functions determined
from table 4.1 according to the conditions at
z=0 and z=a.

The quantities G,, H,, and J, are obtained
from table 4.1 by replacing z by ¥ and m by «.

Another comprehensive set of solutions was
later given by Janich (ref. 4.2). Fundamental
frequencies were obtained for 18 combinations
of boundary counditions. He, too, used the

TaBLE 4.1.—Frequency Coefficients in Equation (4.16)

Boundary

conditions at— m G- H, Jz
s b 2a e ) e (m—1 (m—1)?
Co T 2 1. 506 1. 248 1. 248
2 2
1 2 1 2
O 5,45 ... | m—1 ( *g) [1—*———1 (m'"é) 1-
(m=3)r (m=3)r
3
Foooooo . 0 0 0 0
1 0 0 12/x?
2 1. 506 1. 248 5. 017
1 iV 2 AN 6
Fo_ 3,4,5 ... — _1 -2 _x
m 3 (m 2) [1 _1> (m 2) 1-§-( _E)
m 3 k2 m 3 L
Coo 3 3 a\? 1 3\ 1
88b_ i 2: 3’ 4: e m_g (’Yn"“z) {1——3 m—; 1— 3 }
(ﬂl—'z)’ﬂ' (m‘—z ™
Foooom . 1 0 0 3/x
3 2 3
SSb_ 2,34, ... -3 -2 Y YR S 3
' m i ( 4) [l —§) (m 4) [1""( _§)
m 1 T m i T
Coa________ 3 0. 597 —0, 0870 0. 471
-------- 2 1. 404 1. 347 3. 284
b 1 A 2 1Y 2
Fo oo ... 3,45, m—3 (m—- §> 1—“1> m—g 1‘}""_1“‘—
m'—‘§ T (m—§)1r
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Rayleigh method, but used simple trigono-
metric functions which satisfied only the geo-
metric boundary conditions. The mode shapes
used in reference 4.2 are given in table 4.2.
The frequency w is given in reference 4.2 for
»==0.25 by
. DK

w =‘&47, —N (4.17)

with K and N given in table 4.2.

The results of references 4.1 and 4.2 are both
obtained by the Rayleigh method and, hence,
yield upper bounds on the frequency values.
However, it must be pointed out that both sets
of results have limitations in accuracy. The
three cases not included in table 4.2 (F~F-F-F,

SS-F-F-F, and SS-SS-F-F) yield such poor
results with mode shapes of the same type that
they were not included in reference 4.2. The
force-type boundary conditions as well as the
geometric are satisfied in reference 4.1; this
usually improves the accuracy of the solution,
but occasionally makes it worse. The results
determined from table 4.1 will decrease in
accuracy for higher mode shapes (increasing
values of m and n).

A partial summary of vibration frequencies
for rectangular plates was given in reference 4.3.

4.1 SS-85-8S-SS

The problem of plates with all sides SS is the
most simple to solve for the rectangular plate.

TaBLE 4.2.—Frequency Coefficients for Equation (4.17) and Different Mode Shapes; v=0.25

Deflection function or mode shape N K

Boundary conditions
LLLLL2LYL,
b 2
/ a ( 08 —-——1>( 08 —@—
7777
/
y Hb
; a | (cos T _ cos ——)(cos 2my_ ) 1.50
L L d L
y
Y, (1—005 —)(cos Zny_
777777
e/
y 7
/
D s N A (cosgﬁ:—l) sin 2¥
V4 a b
/
y B ( 21rx 1)
/ [
Vs
7
5 v 2%z
co8 ——1
a
7
by (cos 2L cos —)(cos ——~cos
/
/ H
/ i (cos ————c
7777

)(1 cos 3¥) .227

2.25

12+8 (§)2+ 12 (%)4
a5+ (3) +5 (5)

2 4
.340 | 0.0468-+0.340 (‘5‘) +1.814 (%)

75 | 442 (§)2+o.75 (§)4

2
.50 | 2.67-40.304 (g)
1.50 8

1.00

2.56+3.12 (%)2+2.56 (%)4

2 4
0.581+0.213 (g) +0.031 (g)
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Boundary conditions Deflection function or mode shape N K
/ (l—cos 1’5>(1—co:s ﬂ) 0.0514 | 0.0071+0.024 (9)2
TIIIT7 2a 2b : ’ ' b
4
+0.0071 (‘5‘)
-7 3rz xx\ . wY a\’ o\
(cos g CoS g3, ) sin 4 .50 1.284-1.25 (5>—}—0.50 (5>
| 3rz T\ Y a\’
1 (cos 2 —cos =)y .333 | 0.853+0.190 <5>
¢ {
4 ' c0s 372 cos IZ 1.00 | 2.56
2a 2a
(1-cos 32) 5 sin 72 1134 | 0.0156-+0.0852 (‘1>2
2a/ b* b : b
4
40.1134 (9)
b
1L (1—~c ff) y 0756 | 0.0104--0.0190 (‘-’)2
=== %%/ b ' ' ' b
y
/ 1—cos o .2268 | 0.0313
a
] 2 ‘
i in 7% gin 7¥ (2) (9)
L ____J sin —= sin - .25 0.254-0.50 3 +0.25 3
Y 2
L] (s Z2) 2 1667 | 0.1667+0.0760 (%)
! ] . 7T
i gin — .50 4.50
a
The boundary conditions are satisfies the boundary conditions, where 4, is
M ' an amplitude coefficient determined from the
w=0,M,=0  (forz=0,a)Y (4.18) initisl conditions of the problem and m and n
w=0,M,=0  (fory=0,b) are integers. Substituting equation (4.19) into

When equations {1.29) are used it is seen that

equation (1.4) gives the frequency

Wonm A sin ™ sin ™ (4.19) w=‘/§ [(%’)2(’%)2] (4.20)
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A plot of four frequency parameters as a func-
tion of the b/a ratio was made by Vet (vef. 4.4)
and is shown in figure 4.1.

40
’ 7~
i -
/H M /
20 i
v 1
S z/ atle
b 7 W,
£ o8 e
@
I A
/ = T
0.4/ / sS §5{ 0
ss !
b ————f T
02 / ol
%o 20 40 60 80 100 200 400 600 80GIO00
090 wb? p7D

Figure 4.1.—Frequency parameter 0.90wb*+/p/D for
S8~-S8-8SS-88 rectangular plate. (After ref. 4.4)

The node lines for a general rectangle are
simply straight lines parallel to the edges as
shown in figure 4.2. For square plates, how-
ever, two mode shapes may have the same
frequency and exist simultaneously, their rela-
tive amplitudes depending upon the initial con-
ditions. Sequences of nodal patterns obtain-
able for a given frequency are shown for three
cases from reference 4.5 in figure 4.3. The
problem was also solved in reference 4.6 by
replacing the plate by an assemblage of beams
and concentrated masses.

3

mxl,nst ms2 nai m=i,ns2 ms2,ne2

Fiaure 4.2.—Nodal patterns for SS rectangular plate
with a>b..

4.2 TWO OPPOSITE SIDES SS

There are six combinations of boundary con-
ditions for which two opposite sides are SS.
One of these (for the plate with all sides SS
which has a simple, exact solution) has already
been. discussed. The remaining five cases also
have exact (although more difficult) solutions.
When the edges 2=0 and z=a are SS, it is
seen that the conditions at these boundaries,
as well as the differential equation of the prob-

A
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N 1 YA 1 (]
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7 N Ve Saw # -
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W wg Ap=hig Aqi=-102444 Aqm~2A)4
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A i i [ T |
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§ { A P
[ HE [ S
P H )
] \ g 1 1 i
[ ) [ [
P by U
N g Py [ S
! N/ ] vt |
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Agi=-Ajs Ag=-102Ag Agi=-5A5

Ficore 4.3.—Combined nodal patterns for a 88
square plate. (After ref. 4.5)

lem (eq. (1.4)), are exactly satisfied by using
the first half of equation (1.37) with a=m=/a;
that is,

Wiz, y):f;l [Ansin VEE—oy

+ B, cosvk*—aty+Cp sinh vV o’y
+Dpn coshVE*+cPylsiner  (4.21)

Applying the remaining four homogeneous
boundsary conditions results In a set of fourth-
order characteristic determinants, one for each
value of @. FEach determinant has an infinity
of solutions for the eigenvalues k. Any of the
four edges being free is a necessary and suffi-
cient condition for the frequency parameter to
depend upon Poisson’s ratio.

The first straightforward, comprehensive
solution of these five cases by the method out-
lined above was given by Fletcher, Woodfield,
and Larsen in reference 4.7 and in reference 4.8.
In reference 4.7 an excellent analysis is made of
the conditions which lead to k*<e? requiring



46 VIBRATION OF PLATES

that sin k*—a?y and cos \/k2—a2y be replaced
in equation (1.36) by sinh yo®—Zk% and cosh
vo?—k%y, respectively. They formulated the
characteristic determinants and solved for the
eigenfunctions for all five cases and published
the first six frequencies of a square plate in each
case. '

Iguchi (ref. 4.9) solved the problems involving
one edge C and the opposite either C or SS and
presented extensive numerical results for them.
Das (ref. 4.10) formulated characteristic equa-
tions and eigenfunctions for the two cases of
opposite edges either F or C. Pertinent dis-
cussion can also be found in reference 4.11.

It has been shown (e.g., refs. 4.9 and 4.12)
that a useful analogy exists between the vibra-
tion and buckling of rectangular plates having
two opposite sides SS. The deflection of a
rectangular plate loaded by compressive inplane
forces is given by (see the appendix)

a?
o Mo

where N,=N,(z,y) and N, are compressive
forces per unit length acting in the z- and y-
directions, respectively, and NV, is the inplane
shearing force per unit length. Taking the case
N,,=N,=0 a.nd assuming that wlz, y)=

ZY (y) sin 2222 (where m=1, 2,

the SS boundary conditions at =0 and r=a
and reduce equation (4.22) to the two homeo-
geneous equations

dZY m
Lo

&Y N,

- (a\/% +“2> ¥'n,=0

where a=mw/a, as before. When equations
(4.23) are compared with equations (1.34), it is
seen that the solution for buckling also solves
the vibration problem if N.,a%D is replaced by

DViw=—N, 2% 1 aN, (4.22)

zbz

. .) satisfy

(4.23)

y y

a/2
LLLLLLL L L L L LLL L L L L L L,

x|

b/2

b ove: oo s e oo anm s s vy o m s sovm ]
o
ey g ——

RS

SIS 77777777, //////////////// X

FigURE 4.4.—S8S-C-SS-C plate.

pw’/D and the boundary conditions on the re-
maining two edges are the same. Thus the
critical buckling load N, gives vibration fre-
quencies according to

2
N,~%“’2~ (4.24)

421 SS-C-SS-C

Recognizing that the solution for SS~C-S8-C
plates (fig. 4.4) given by equation (1.37) must
be valid for all independent values of z and sub-
stituting into the boundary conditions

Wi, 0)=%’—;—’ (z,0)=W(z, b)=%y“—’<z, B)=0

(4.25)
results in the four homogeneous equations

B,+D,=0
A+ Cpr=0
Am sin Mb+B,, cos b+, sinh A\
+D,, cosh Ab=0
Ah; €08 Mb— B sin Ab 4 Cphs cosh Agh
+Dphe sinh Agb=0 J

(4.26)
where
)\1 = sz-—az
(4.27)
X2E vk2—}—a2

For a nontrivial solution the determinant of the coefficients of equations (4.26) must vanish; that is,

D 1
);1 0
sin Ad €0S A:b
)\1 CO0Ss )\lb —)\1 si.n Alb

0 1
As o |
sinh Agb cosh Az =0 (4.28)
)\2 OOSh )\zb Rz smh Azb
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TABLE 4.3.—First 6 Frequency Parameters \=wa¥/p/D for S8-C-SS-C Square Plate

S } 28. 946 1 54.743 ] 69. 320 i 94. 584 \ 102. 213

129. 086

Mode. oo ! w11 P wgy | w1z ! w3z } w31 w3

which, when expanded, yields the characteristic
equation

2A1Az{cos A\b cosh A0—1)
4+ (A2—2N2) sin \;b sinh A b=0 (4.29)

Iguchi (ref. 4.9) solved this problem in essen-
tially the same manner and obtained the first
six frequency parameters for the case of the
square. They are presented in table 4.3.

For the frequency w,., the subscript m identifies
the number of half-sine waves in the z-direction
and the subscript n identifies the nth lowest root
for a fixed value of m. The results of table 4.3
are also verified in references 4.7 and 4.13.

TasLE 4.4.—12 Higher Frequency Parameters
A=wa?(4/p/D) (not a Complete Set) for SS—
C-88-C Square Plate

pA Mode A Mode
140189 ________ i (5501 307300 _________ @iy
154765 _______ ! wyy || 333.926________ @5
199.797________ ‘ wgy || 379.274_____.__ w35
208.373._____.. wy || 425.885________ w16
234.578________ wyy || 452.877____ . __. (228
279.627_____.__ wye || 498501 . ____ i wsg
i i

In addition, reference 4.9 gives 12 more roots
as listed in table 4.4. It must be emphasized
that other frequencies exist (e.g., wgy, we, and

ws1) which would separate some of the values in
table 4.4 if a complete, sequential list were
available. These can be obtained from the
work of Odman (ref. 4.13) who solved equation
(4.29) with less accuracy than did Iguchi but
extracted the first six roots for m=1,2, ..., 6.
The corresponding frequency parameters are
listed in table 4.5.

Nishimura (ref. 4.14) achieved accurate results
for the square using relatively coarse finite dif-
ference grids. He obtained wa?/p/D=28.974
for the fundamental mode by solving only third-
order finite-difference determinants.

For nonsquare plates, fundamental frequen-
cles are available for various aspect ratios.
These are listed in table 4.6 (see also ref. 4.9).
Hamada (ref. 4.15) used a variational approach
and Kanazawa and Kawai (ref. 4.16) used an

TaBLE 4.5.—Frequency Parameters wa’y/p/D for
SS-C-SS-C Sguare Plate '

wa? \/;/—l—) for values of n of—

m
1 2 3 4 5 6
1.2 289 69.2 | 129.1 | 208.6 | 307.4 | 426. 1
2. 54.8| 94.6 | 154.8 12345 | 333.9 | 452.9
3..-.1102.2 ) 140.2 | 190.9 | 279.5 | 379.1 | 498. 4
4. 170.3 | 206.6 | 265.2 | 344.6 | 443.8 | 563. 5
5____| 2568.5 | 293.8 | 351.1 | 429.8 | 529.0 | 647. 9
6.__.) 366.8 | 400.9 | 457. 4 | 535.1 | 633. 7 | 752. 2
i

TaBLE 4.6.—Fundamental Frequency Parameters for ¢ SS-C-SS-C Rectangular Plate

|

A for values of b/a and A* for values of afb of—

Parameter
1 1.5 2 2.5 3 @
r=wal(vp/D) o ______ 28. 946 17. 369 13. 688 12,129 11. 359 9. 869
N =wb?(Vp/D) - o ___ 28. 946 24. 047 23. 814 23. 271 22. 985 22. 373
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TABLE 4.7.—Frequency Parameter wb*(y/p/D) for the Second Antisymmetric Mode of a SS-C-SS-C
Rectangular Plate

Boundary conditions

wb?(vp/D) for value of a/b of—

1.5 2 2.5 3 ©

LLLLL
b v e =4 D
a
7777777

68. 181

65. 118 63. 641 62. 967 62. 602 61. 178

integral formulation to obtain confirming results
for several a/b ratios. In reference 4.16, results
are also obtained for the mode antisymmetric
about 37=0, for a/b=1. Unfortunately, this is
the second antisymmetric mode shape of the
plate. These frequency parameters are given
in table 4.7.

The first six roots of equation (4.29) for
m=1, 2, . . ., 6 and for a/b=0.5, 1.5, and 2.0
were found in reference 4.13. The correspond-
ing frequency parameters are listed in table
4.8.

By using equation (4.24), one can apply
stability results to this problem. Fundamental
frequencies are listed in table 4.9 for various

Eliminating three of the constants (e.g.,
B,, C,, and D,) in equations (4.26) in favor of
a fourth (e.g., A,) leaves one equation giving
the eigenfunctions, or mode shapes, for this
case. From reference 4.7 it is known to be:

w{z, ) =1{(cosh Ab—cos M) (A1 sinh Ay
—Az sin Ay)
—{\; sinh A, sin A;b) (cosh Ay —cos A,y)] sin az
(4.30)
Substitution of A; and A; determined from

equations (4.27) into equation (4.30), using the
frequencies from the tables of this section,

a/b ratios as given on page 367 of reference 4.17.  completely determines the mode shapes. Mode
TABLE 4.8.—Frequency Parameters wb*/p/D for SS~C-SS-C Rectangular Plate
«b?vp/D for values of n of—
g m
1 2 3 4 5 6
1 54. 8 94. 6 154. 8 234 5 333. 9 452. 9
2 170. 3 206. 6 265. 2 344. 6 443. 8 563. 5
0.5 3 366. 8 400. 9 457. 4 535. 1 633. 7 752. 2
4 642. 8 675. 9 730. 5 806. 9 904. 2 1021
5 997. 7 1030 1084 1159 1257 1375
6 1432 1464 1517 1592 1686 1802
1 25. 0 64. 9 124. 5 203.7 302. 4 420. 9
2 35. 1 75.6 135. 7 215. 1 314. 1 432. 8
15 3 54. 8 94. 6 154. 8 234.5 333.9 452. 9
’ 4 84. 1 122. 3 182. 6 262. 5 362: 0 481. 1
5 122. 6 160. 6 219. 3 298. 9 398. 5 518. 0
6 170. 3 206. 6 265. 2 344. 6 443. 8 563. 5
1 23. 8 63. 4 123. 0 202. 1 300. 7 419. 0
2 289 69. 2 129. 1 208. 6 307. 4 426. 1
2.0 3 39.0 79. 5 139.7 219. 3 318. 2 437. 1
’ 4 54. 8 94. 6 154. 8 234.5 333. 9 452. 9
5 75. 9 114.7 174. 6 254. 7 354. 1 473. 3
6 102. 2 140. 2 199. 9 279. 5 379. 1 498. 4
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Figure 4.5—Mode shapes Wpua(Z, ) =X, (%) V(%) for 36 modes of a S8—C-88-C square plate. m, n=1,2, ... 6.
(After ref. 4.13)

TABLE 4.5.—Fundamental Frequency Parameters for SS-C-8S—-C Rectangular Plate

afb ‘ 0.4 0.5 0.6 i 0.7 0.8 l 0.9

13. 718 15. 692 18. 258 20. 824 24. 080

wep/D__ . l 12. 139
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FIiGURE 4.6.—Variation in Y,(§) with a/b for the mode
m=6, n=5 for a SS-C-8S-C rectangular plate.
(After ref. 4.13)

shapes were computed and plotted in reference
4.13 for the first six roots of equation (4.29)
for m=1, 2, ... 6. Plots were made for
a/b=0.5, 1.0, 1.5, and 2.0. These are repro-
duced in figure 4.5 for a/b=1.0- alone. The
mode shapes are represented as the products
Won(@, 1) =Xn(Z) Y.(7). Each of the six parts
of figure 4.5 corresponds to one value of m.
The first six modes having that value of m
are then determined from the separate curves
Y.(y). The curvesfor ¥,(%) do not change mark-
edly for variation of a/b in the range 0.5<a/b
<2.0. Themaximum variationsforthe 36 modes
shown in reference 4.13 are illustrated by
figure 4.6, which is for the mode m=6, n=>5.
When £*+ao?>>1, then cosh I2+ofb—
sinh yk*+o?b and equation (4.29) reduces to
the following asymptotic formula (ref. 4.7):

= [5G

(m,nintegers) (4.31)

Other approximate formulas are given pre-
viously in equations (4.16) and (4.17). Fre-
quency parameters obtained from equation
(4.16) are given in reference 4.4 and are re-
produced as figure 4.7.

The problem was also studied in references
4.18 to 4.21.

4.0
/// /LA’
A
i » afll’ /,/
AT
‘\: 1.0 / / //
o 7 Z
g oe A
o8 f ]
17 sS imi
04 C ss [} l:..._
o—— b ———e 11
oz RN
1o 20 40 60 80100 200 400 600 8001000
0.90 wb? 7D

Ficure 4.7.—Frequency parameter 0.90wb?yp/D for a
S8-C-8S-C rectangular plate. (After ref. 4.4)

4.2.2 SS-C-S5-SS

The boundary conditions for SS-C-SS-SS
rectangular plates (fig. 4.8) at y=0,b are
Wiz, 0)=Mi(z, =Wz, b= (@, 5)=0

(4.32)

Substituting equation (1.37) into equation
(4.32) as in the previous section yields the
characteristic equation (ref. 4.7)

Az cosh Agb sin Ah=2A; sinh Asb cos b (4.33)

l////////////////////////////////

FicURE 4.8.—8S-(C-88-S8S plate.

TABLE 4.10—First 6 Frequency Parameters A=wa?y/p/D for SS—C-SS-SS Square Plate

23. 646 1

51. 674 t 58. 641 ’

86. 126 ! 100. 259

113. 217

[ ] Wi t Wiz ’ wWag l w3t wi1g
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where )\; and XA, are defined in equations (4.27).

Iguchi (ref. 4.9) also obtained equation (4.33)
and presented the first six frequencies. for the
case of the square. They are given in table
4.10. These results are verified in reference
4.7. Three additional frequencies listed in
reference 4.9 are given in table 4.11. Explana-
tion of the significance of these roots appears
in the preceding section (4.2.1).

TaBLE 4.11.—3 High-Frequency Parameters
A=wa%/p/D for SS-C-SS-SS Square Plate

Ungar (ref. 4.22) presented an interesting
table which shows the ratio of the frequencies
of the SS-C-SS-SS plate to those of the

SS-SS5-SS—-SS plate when a=b. This is given
here as table 4.12, where m denotes the number
of half-sine waves in the z-direction (fig. 4.8)
and n denotes the mode number for a given
value of m.

TaBLE 4.12.—Ratio of Frequencies: of ‘a SS-C-
SS-SS Plate to Those of SS-SS-SS-SS
Plate When a=b

I Frequency ratio for value of n—

m
1 2 3 4 5 6
) I .19 1.06 | .02 | 1.01 | 1.00 | 1. 00
2 .. .21 .09 | LO5 | 1.02 | 1.02 1. 01
S 1.14 | 1.09 | 1. 06 | 1.03 | 1.02 1. 02
L SO .11 .09 1.06 ) 1. 04| 1.03 1. 02
Soo._._.{1L10{108)] 106} 105} 1.03 1. 02
6 .. 1,08 ) 1.07 | 1.06 | 1.05 | 1.04 1.02

For nonsquare plates, fundamental frequencies are available for various aspect ratios as listed

in table 4.13 (ref. 4.9).

Hamada (ref. 4.15) used a variational approach and Kanazawa and Kawai

(ref. 4.16) used an integral equation formulation to obtain confirming results for several a/b ratios.

TaBLE 4.13—Fundamental Frequency Parameters for SS-C-SS-SS Rectangular Plate

Frequency parameter

A for values of b/a or A\* for values of a/b of—

|
; 1 1.5 2 2.5 3 ®
- \
N=wa?(Yp/D) oo 23. 646 15. 573 12. 918 11. 754 11. 142 9. 869
We=wb(yp/D) . . 23. 646 18. 899 17. 330 16. 629 16. 254 15. 425

The mode shapes are (ref. 4.7)

W(z, y)=(sin M\b sinh A;y—sinh \b sin \,y) sin ax
(4.34)

When k*+a2>>1, equation (4.33) reduces
to (vef. 4.7)

= { TG
(m,n integers) (4.35)

Other approximate formulas are given in
equations (4.16) and (4.17). Frequency param-

eters obtained from equation (4.16) are given
in figure 4.9 (ref. 4.4). The problem was also
discussed in references 4.23 and 4.24.

42,3 SS-C-SS-F
The boundary conditions for SS-C-SS-F
rectangular plates (fiz. 4.10) at y=0, b are

oW

W(z’ O>=Tay (l‘, 0)=Ml/(x7 b)zvu (xy b)=0

(4.36)

All results reported in this section are from
reference 4.7.
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Figure 4.9.—Frequency parameter 0.90wb*yp/D for a
SS~C-SS-88 rectan gular plate. (After ref. 4.4)

Fiqure 4.10.—SS-C-SS-F plate.

Substituting equation (1.37) into equation
(4.36) yields the characteristic equation

2>\1x{(’£)‘—(1—v)2 +2>\1)\2[(§)4+(1—p)2]

4
€08 \;b cosh Agb-- (M—M3) [(5) (1—2»)
—-(1—v)2]sin)qbsinh)\26=0 (4.37)

where A; and \, are defined in equations (4.27).

The first six frequencies for the case of the
square and »=0.3 are listed in table 4.14,
with wn, as described in the section covering
SS-C-SS-C plates (sec. 4.2.1). The mode
shapes are

W(z, ) =<{ [<§>2+ (1 —v)] cosh A\zb
+ [(é)z— (1 —v)] cos A\ b }

(kg Sin )\ly—)\l Sinh 7\2@/)

+{[<§)2+(1 =) |nssimb b
+[(§)2_(1—,,)]x2 sin A }

(cosh A;y—cos xly)> sinaz (4.38)

TABLE 4.14—First 6 Frequency Parameters N=wa%/p/D for SS-C-SS-F Square Plate; v=0.3

33. 06

41. 70 J 63. 01 ’ 72. 40 I 90. 61

‘ @ ‘ w2z x Wi ’ wWai

When k*=a?>>>1, equation (4.37) reduces to

@2}

{m,nintegers) {(4.39)

Another approximate formula is given by
equation (4.17).

By using equation (4.24), one can apply
stability results to this problem. Fundamental

frequencies given in reference 4.17 (p. 364)
and reference 4.25 (p. 298) are listed in table
4.15 for various a/b ratios for »=0.25.

4.2.4 SS-SS-SS-F
The boundary conditions for SS-SS-SS-F
rectangular plates (fig. 4.11) at y=0, b are

Wiz, 0)=M,(z, 0)=M,(z, b)=V(z, b)=0
(4.40)
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FicURE 4.11.—SS-SS-SS-F plate.

TaBLE 4.15.—Fundamental Frequency Param-
eters for SS-C-SS-F Rectangular Plate; v=0.25

afb wa/o[D afb wavp/D
10 ______ 12,859 || ¥.6__________ 18. 258
) U0 13.520 || 1.7__________ 19. 343
1.2 ____.____ 14. 310 || 1.8___.______ 20. 527
1.3 . __ 15198 1 1.9__________ 21. 910
14 _________ 16.086. | 2.0__________ 23. 192
1.5 ______ 17172 || 2.2 _____ 26. 153

All results reported in this section are from
reference 4.7.

Substituting equation (1.37) into equation
(4.40) yields the characteristic equation

)\2 [({5)2— (1 —V):r cosh sz sin X1b
\? .,
=X\ [(;) +1 —v)] sinh\b cos b (4.41)

where \; and A, are defined in equations {4.27).

The first six frequencies for the case of the
square and »=0.3 are listed in table 4.16, with
wm, 8s described in the section covering
885-C-SS-C plates (sec. 4.2.1).

The mode shapes are

Wiz, y)= { [(§>2— (1 ——v)] Sin Ay

+ (I£>2+(1 -—v)] sinh A\;b sin )\ly} sin ax
(4.42)

When k2+ao? >>>1, equation (4.41) reduces to

o= { ()4 02T 12

{m,nintegers) (4.43)

Other approximate formulas are given by
equations (4.16) and (4.17).

By using equation (4.24), one can apply
stability results to this problem. Fundamental
frequencies given in reference 4.17 (p. 362) and
reference 4.25 (p. 297) are listed in table 4.17
for various a/b ratios for »=0.25.

495 SS-F-SS-F

The boundary conditions for SS-F-SS-F
rectangular plates (fig. 4.12) at y=0, b are

Mz, 0)=V(z, 0)=My(z, b)=V(z, b)=0

(4.44)

Substituting equation (1.37) into equations
(4.44) yields the characteristic equation

CIOR R (O !

4 2
5 5in A Sinh Agb=2Mhg [(g) — —u)z]
X{cosAb cosh Ab—1) (4.45)

where A, and A; are defined in equation (4.27).

TABLE 4.16.—First 6 Frequency Parameters N=wa*(+/p/D) for SS-SS-SS-F Square Plate; v=0.3

11.88 1 27.76

41.20 90.29

59.07 ! 61.86
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Figure 4.12.—SS-F-S5-F plate.

TaBLE 4.17.—Fundamental Frequency Param-
eters for SS—SS-SS-F Rectangular Plate; v=
0.25

a/b ' wazx/;/ﬁ alb wa“’w/;/ﬁ
l

0.50____.____ 10.362 || 1.8 _.______ 15. 396
0.60_________ 11.349 || 20__________ 16. 481
0.80_________ 11.547 || 2.6 _________ 19. 244
10 ... ___ 11.843 || 3.0__________ 22. 205
1.2 . 12.632 || 4.0__________ 28. 324
14 ______ 13.520 || 5.0__________ 35. 133
16 . __ 14. 409

The first exact solution to this problem was
achieved by Voigt (ref. 4.26) in 1893. The first
six frequencies for the case of the square and
»=0.3 are taken from reference 4.7 and listed
in table 4.18, with w,, as described in the sec-
tion covering SS—-C-SS-C plates (sec. 4.2.1).
The frequencies w;; and wy are the only fre-
quencies smong the first six frequencies for each
of the six cases of plates having two opposite
edges simply supported for which k%< a2

For non-square plates, a complete set of lowest
frequencies for m*r*<wa®/p/D< 160 has been cal-
culated by Jankovie (ref. 4.27) for various
aspect ratios and for y=0.3 and »=0.16. These

are given in tables 4.19 and 4.20. In these tables
the notation w,, is the same as before; that is,
m gives the number of half-sine waves in the
z-direction, and » is the nth lowest frequency
for a given value of m. Odman (ref. 4.13) also
obtained frequency parameters for »=1/6 and
a/b=0.5, 1.0, 1.5, and 2.0. He gave 36 values,
but he assumed that for n=1 the plate behaves
exactly like a beam. His results, where appli-
cable, are essentially verified in table 4.19.
Roots obtained from reference 4.13 which sup-
plement those of reference 4.27 are also shown
in the column for a/b=1.0 in table 4.19. It
must be remembered that the frequencies w,,; are
omitted in these portions of the table.

When the results of table 4.20, when a/b=1,
are compared with those of table 4.18, it can
be seen that disagreement exists for values of
wy and ws. The problem appears to be the
assumption in reference 4.27 that k*>a? for
all roots. In reference 4.7 it is shown that

<ot if )
(<7 C-0)

This gives critical constants for various values
of Poisson’s ratio as listed in table 4.21. Thus,
for a square plate, if »=0.3, negative values
of B2—ao? exist for m<15. Even though the
roots for which k%< o? are not handled correctly
in reference 4.27, the frequencies arising from
these roots should not differ markedly from
those given in tables 4.19 and 4.20.

Zeissig in an early piece of work (ref. 4.28,
published in 1898) also set up the frequency
determinant for an exact solution and achieved
& comprehensive set of solutions which are
shown in figure 4.13. In this figure, solid
curves identify symmetric modes in y and
broken curves identify antisymmetric modes
in y. The 10 numbered points indicate in-
teresting intersections or ‘‘transition points”

(4.46)

TABLE 4.18.—First 6 Frequency Parameters A=wa*(y/pjD) for SS-F~SS-F Square Plate; »v=0.3

16.13 ‘ 36.72 i 38.94 ! 46.74 l 70.75
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TasLe 4.21.—Critical Constants Determining When k*<a? for SS-F-SS-F Plate

—— symmetric modes iny ---- antisymmetric modes in y

FIGURE 4.13.—Frequency parameters wa?/z*vyp/D for
various a/b ratios of a rectangular SS-F-S8-F plate.
Numbered points are intersections where two modes
can exist simultaneously. (After ref. 4.28)

where two modes can exist simultaneousiy.
For example, at point 1 the fifth root for
m=1 (called 1/4 mode) and the third root for
m=3 (3/2 mode) can exist simultaneously for
s plate having an afb ratio of approximately
0.9. Figures 4.14(a¢) and 4.14(d) (reprinted
from ref. 4.28) show the nodal patterns for
these two modes. The areas dencted by plus
signs can be taken as positive (upward) dis-
placements and the others, as negative. If
the initial conditions are chosen so as to excite
each mode with the same amplitude, the
308-837 O—70——5

v 0 0.1 I 0.2 ' 0.3 ‘ 0.4 ! 0.5
~ (9) ____________________ ® 162. 507 36. 463 14. 455 7. 202 4.051
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1’ o ~ ,’ Ficure 4.14.—Superposition of two modes having the
i i i / same frequency. (a) Nodal pattern for 3/2 mode.
02514r 7 7 ; (b) Nodal pattern for 1/4 mode. (¢) Nodal pattern
7 for (a) superimposed on (b). (b') Nodal pattern
o Lin=tfn=2 n=3 n=4 h=5 when initial amplitude of 1/4 mode is 180° out of
0 0 520 25 30 35 phase. () Nodal pattern for (a) superimposed
Ly on (bY). (After ref. 4.28)

resulting nodal pattern of the superimposed
modes is shown in figure 4.14(c). If the initial
amplitude of the 1/4 mode is taken 180° out of
phase as in figure 4.14(b"), the superimposed
motion is as in figure 4.14(c’). Stepwise
superposition of varying ratios of the modes
3/2 and 1/4 yields nodal patterns as shown
in figure 4.15 (from ref. 4.13).
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- P ~-a- Pt e ~ 7 ~ Ny H

FicuBeE 4.15.—Stepwise superposition of two modes
having the same frequency. (After ref. 4.28)
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The detailed mode shapes are (ref. 4.7):

Wz, y)= (— {cosh Asb—cos \;b) [<§>4~ (1 _.,,)2]

{xl [()+a— Jsinbrgn
[C-o-sn)
+{n[()+a—»] smnre
~x2[<§)2—(1 _,)]2 sin )\,b}
-0
[}

(4.47)

Mode shapes were computed and plotted in
reference 4.13 for the six roots of equation
(4.45) for m=1, 2, . . ., 6 and »v=1/6. Unfor-
tunately, it was assumed that for the lowest root
(symmetry about 7=0) for each value of m, the
plate behaves exactly like a beam and, conse-
quently, these cases were omitted in the results.
Thus, the plotted mode shapes begin with those
antisymietrical about 7=0. Plots are given
in reference 4.13 for a¢/6=0.5, 1.0, 1.5, and 2.0
and those for a/b=1.0 reproduced in figure 4.16.
The mode shapes are represented as the products
Wan(®, 7) =Xn(Z)Y.(7), where 7 and 7 are
measured with the point at the center of
the plate taken as origin (see fig. 4.12).
Each of the six parts of figure 4.16 corre-
sponds to one value of m. The first six modes
having that value of m are then determined
from the separate curves Y,(y). The curves
for Y,(y) do not change markedly for
variations in a/b in the range 0.5<{a/b<2.0.
The maximum variations for the 36 modes
shown are illustrated in figure 4.17, which cor-
responds to m=>5 and n=5.

When %%/a*>>>1, equation (4.45) reduces to
(ref. 4.7)

o= { ()] I

{m, nintegers) (4.48)

Other approximate formulas are given in equa-
tions (4.16) and (4.17).

Zeissig (ref. 4.28) reported many experimen-
tal results which essentially substantiated his
analytical calculations. The problem was also
formulated in references 4.10 and 4.24.

4.3 OTHER SIMPLE EDGE CONDITIONS

4.3.1 All Sides Clamped (C-C-C-C)

The problem of C-C-C-C rectangular plates
(fig. 4.18) has received a voluminous treatment
in the literature, especially for the case of the
square plate. The first reasonably accurate
results for the square plate were given in 1931 by
Sezawa (ref. 4.21), who used the series method.
He used functions which exactly satisfied the
differential equation (eq. (1.1)) and the bound-
ary condition of zero deflection along all edges
and required the slope to be zero only at the
midpoints of the edges. This initial work has
been followed by & host of Japanese publica-
tions on the problem; for example, see references
4.9,4.15,4.16, 4.20, and 4.29 to 4.33.

Some variation of the series method was used
in references 4.9, 4.20, 4.21, 4.29, 4.30, 4.32, and
4.34 t0 4.40. Particularly notable is Tomotika’s
work (refs. 4.30 and 4.41); he determined
the fundamental frequency for the square plate
with extreme accuracy. Like Sezawa, he chose
functions which satisfied the deflection condi-
tions exactly and set up an infinite characteris-
tic determinant for the slope conditions.
Convergence of results from a sequence of deter-
minants obtained by truncating the infinite case
was used to get extreme accuracy. He also
used the Rayleigh and Weinstein methods to ob-

tain the frequency bounds 35.9855< (wa%/p/D)
<(36.09 for a square of dimension a x a.

Finite difference techniques were used in
references 4.14, 4.38, 4.42, and 4.43; the Galer-
kin technique, in references 4.13, 4.33, 4.44,
4.45, and 4.46; the Rayleigh or Rayleigh-Ritz
method, in references 4.1, 4.2, 4.47, and 4.48;
Weinstein’s method, in reference 4.49; integral
equations, in reference 4.16; and a variational
approach, in reference 4.15. Other publica-
tions include references 4.18, 4.31, and 4.50 to
4.56. A notable lack of experimental results
exists.
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Ficure 4.16.—Mode shapes W,,,(Z, #) =X (%) Y,.(9) for 36 modes of a SS—-F-88-F square plate.
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(After ref. 4.13)

Table 4.22 summarizes the first six sets of
frequencies, nodal lines, and amplitude coeffi-
cients for a square plate having side length a.
Iguchi (ref. 4.9) did not find the fourth mode in
his work. Young (ref. 4.47) used the products
of beam functions (i.e., eigenfunctions for C-C
beams) and the Rayleigh-Ritz method to ob-
tain accurate upper bounds. The resulting
mode shapes are of the form

W(Z, y):i iAmn[COSh %E—oosﬁ“f

m=]n=1 a
— iy (sinh T sin ﬂ)] [cosh Y
a @ a
—cos @Z_l__an (sinh &Y _ sin fﬂ)] (4.49)
a a a

where the values of A, are given in table 4.22,
those of @ and ¢ are given in table 4.23, and
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FicorRe 4.17.—Variation in Y,(7) with a/b for the
mode m=>5, n=>5 for a SS-F-SS-F rectangular plate.
(After ref. 4.13)

the origin of the zy-coordinate system is taken
at one corner of the plate as shown in figure
4.18.

Further results were obtained by Bolotin
(ref. 4.57), who used a variation of the series
method to obtain approximate results for the
square. These are summarized in table 4.24.
In table 4.24 odd values of m yield modes sym-
metric about the y-axis, even values of m yield
modes antisymmetric about the y-axis, and simi-
larly for n with respect to the F-axis. It is
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Fiaure 4.18.—C-C-C-C rectangular plate.

TaBLE 4.23.—Figenfunction Parameters for e

C-C Beam
m, n Oy Oy €my €n
R 0. 98250222 4, 7300408
2 . 1. 00077731 7. 8532046
s J 0. 99996645 10. 9956078
4 - 1. 00000145 14. 1371655
S S 0. 99999994 17. 2787596
6. 1. 00000000 20. 4203522
>0 . 1.0 @r+1)=/2

TABLE 4.22.—First 6 Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for
a C-C-C-0 Sgquare Plate

Mode 1 2 3 4 5 6
2 ‘/F} = 35. 9866 ©73.40 ©108.22 |_______________ ©132. 18 ° 164. 99
“VD b 35.99 b 73, 41 b 108, 27 > 131. 64 b 132, 25 b 165. 15
g oA s s /7 S L s
v | 4 U AU I T AL
[
_____ oo oo o e of 2 3 Lk
lines_ .. ﬁ 4 ; g /i ? e ; //y\\ L/ 2 (SN g ;f‘ 3 r /
3 1
g o4 44 g4 Y4 Y4
Ampli- A1;=1.0000 A1=1.0000 Ag=1.0000 Ay=1.0000 Ay=—0.0280 | Ayp=—0. 04086
tude co- | A;=0.0142 Ay=0.0101 A3=0.0326 A;=0.0085 A;=1.0000 Ayu=—0.0105
efficient b | A;5=0.0020 A1=0.0020 Ag=0.0073 Aun=-—1.0000 | A;=0.0055 A= —0.0017
A3=0.0142 A3=0.0406 A4=0.0326 Agp=—0.0141 | A»=1.0000 A3,=1.0000
Ap=—0.0081 | A3y=—0.0022 | Au=—0.0019 | A5=—0.0085 | Az=0.1267 A3=0.0560
! A35= —0.0009 A3a= —0.0007 A4e= —90.0010 Asz‘—‘ 0.0141 A35= 0.0118 Aas——‘ 0.0141
| Ag5=0.0020 A5=0.0070 Ag=0.0073 A5 =0.0055 As=0.0238
Ag=—0.0009 | A5=—0.0011 | Ae=—0.0010 Ap=0.0118 Ay=—0.0011
Agp=—0.0004 | Asp=—0.0005 | Ag=—0.0006 Ag=—0.0018 | As=—0.0009

* Work of Tomotika (ref. 4.30).
b Work of Young (ref. 4.47).
¢ Work of Iguchi (ref. 4.9).
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TABLE 4.24.—Approzimate Freguencies for a
C-C-C-C Sguare Plate

m n i wa’\/;/T)
1 1 35.10
2 1 72. 90
2 2 107. 47
3 1 131. 63
3 2 164. 39
4 1 210. 35
3 3 219. 32
4 2 ! 242. 20
4 3 295. 69
4 4 370. 66

noted that only one root is given in this table
in the vicinity of 132. The general formula
for frequency for a square when m=n is (ref.

4.57) B
wmn=2(m+§>2ﬁ D

V5 (4.50)

Bazley, Fox, and Stadter (ref. 4.58) used a
method developed in reference 4.59 to compute
fower bounds for the first 15 frequenecies of the
following symmetry class of & square: With an
zy-coordinate system having its origin at the
plate center and axes parallel to the edges, the
modes are symmetric with respect to both Z
and 7 and are unaltered by interchange of z
and % (fourfold symmetry). (Thus, the first
and fifth modes of table 4.22 would be the only
modes shown which would fall into this sym-
metry class.) They also obtained extremely
accurate upper bounds by the Rayleigh-Ritz
method by teking the first 50 admissible prod-
ucts of C-C beam functions. Double-precision
arithmetic (16 significant figures) was used in
the computations where necessary. Results
are listed in table 4.25. In this table results
from the Rayleigh-Ritz method are given using
both 25 and 50 admissible functions to show
the rate of convergence. ,

Another significant contribution was made
by Aronszajn (ref. 4.49), who used Weinstein’s
method to obtain accurate lower bounds for
the first 10 frequencies of a square plate. The
Rayleigh-Ritz method was used to obtain
upper bounds. These results are summarized
in table 4.26.

TaBLE 4.25.—Bounds on Frequency Parameters
watyp/D for Fourfold Symmetric Modes of a
O-C-C-C Square Plate

waﬁ/;/-ﬁ
Mode Upper bound
Lower
bound

25 terms 50 terms
S 35. 982 35. 986 35. 986
2 . 132.18 132. 21 132. 21
b2 S 219.73 220. 06 220. 04
4 . 309. 08 309. 17 309. 17
;. 393. 00 393. 98 393. 92
[ S 558. 58 562. 38 562. 18
Y SR 565. 39 565. 56 565. 54
8. 646. 62 648. 58 648. 46
¢ 806. 51 814. 84 814. 48
0. .. 900. 70 901. 00 900. 97
1 979,85 | oo_.--. 982. 93
12 .. 1017.5 | oo 1062. 5
13 .. 1127. 4 | . 1147. 1
4. _____ 1235. 1. | .. 1315. 4
5 . 13149 ... 1393. 4

Odman (ref. 4.13) used a variation of the
Galerkin method and mode shapes of the form
WE, ) =X@Y(7), where
X(i) =A1 cosh y.lf‘%‘ A2 sinh }L]E

+A3 cosh ﬂzE+A4 sinh pg-i
Y(y)=Bl cosh ﬂ3y+Bg sinh M3:l_j
+B3 COSh y4§+ B4 Sinh M4y

(4.51)

and where uy, . . ., u, are determined by applying
the Galerkin formula to the differential equation
of motion for the plate. The 36 frequencies
wmn{m, n=1, . . ., 6) computed by this method
in reference 4.13 are upper bounds and are
given in table 4.27. It is interesting to note
that, in spite of apparent numerical precision,
Odman did not detect two separate frequencies
for w3, as did Young (table 4.22).

For computing fundamental frequencies of
clamped rectangular plates of arbitrary a/bratio,
there exists, in addition, Warburton’s (ref. 4.1)
and Janich’s (ref. 4.2) formulas, equations (4.16)
and (4.17). Frequencies obtained from War-
burton’s formula were plotted in reference 4.4.
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TABLE 4.26.—Frequency Parameters for a C—~C-C-C Square Plate
wa’\/ m)
Mode symmetry
Lower bound | Upper bound Mean value Maximum
error, percent
Symmetric about both Z and y_ . _____________ 35. 9693 36. 1074 36. 0384 0. 19
131. 55 133. 20 132. 38 . 63
131. 8 i34. 1 132. 9 . 87
218 231 224. 5 2. 98
Symmetric about Z, antisymmetric about 7 (or
eonversely) . _________ ... 73. 354 74. 226 73. 790 . 58
164. 39 171. 39 167. 89 2. 13
210 216 213 1. 43
Antisymmetric about both Zand y..______..._ 108. 119 109. 936 109. 027 . B4
241, 924 246. 118 244, 021 . 87
242. 071 251. 033 246. 552 1. 85
TABLE 4.27.—Frequency Parameters wa®~ p/D for a C—C—C-C Square Plate
[Values in parentheses were obtained by interpolation; table is symmetric]
wa?Vp/D for values of n of—
m
1 2 3 4 5 6
| S 35. 998965 73. 405 131. 902 210. 526 309. 038 (428)
P S 108. 237 165. 023 242. 66 340. 59 458. 27
B e 220. 06 296. 35 393. 36 509. 9
4 e e 371. 38 467. 29 583. 83
5 TS S I U URNUUITNS S 562. 18 (676)
6 e e e e 792. 5

A simple formula derived by Galin (ref. 4.45)
for this case is

1o i1 A1 T\ D
w——}2\/2(a4+7a2b2+b4>\/? (4.52)

For a square this reduces to we?/p/D=36, which
compares favorably with the accurate value of
35.9866 from table 4.22.

A summary of the literature for frequencies
of nonsquare C-C-C-C rectangular plates is
presented in table 4.28. Neither Iguchi (ref.
4.9) nor Kanazawa and Kawai (ref. 4.16) recog-
nized the existence of the other mode having
one symmetry axis and one antisymmetry axis
which is not shown in the table.

Sixteen frequency parameters for a/b=0.25
and 0.50 are computed in reference 4.60. These
are given in table 4.29, with m and n as ex-

plained previously. More extensive resuits are
obtained in reference 4.13 and are also listed in
table 4.29.

Mode shapes in the form W&, %)=
Xn(@)Y.(y) corresponding to w,, were found in
reference 4.13. The components X, (Z)ya and
Y.(#)+/b are shown in figure 4.19 for a/b=1.0.
Variation in these curves with a/b is very small
for the range 0.5 <a/b<2.0. The magnitude of
this variation is shown by figure 4.20 for the
components X,(Z)ya and Y,(7)/b. Figure
421, taken from reference 4.60, shows the

frequency psrameter -)%=wa2(\/p/D)/'rr2 plotted
i

as a function of a/b and bfa. For a¢/b=0, the
frequencies are given by reference 4.60:

=37

(4.53)
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TABLE 4.28 —wb%/p/D for C—C-C-C Rectangular Plates

wb2p/D for values of a/b of—

Source Mode (¢>b)
1.5 2 2.5 3 ©
a
Iguchi (ref. 49)..___.__ LLLL. # 27. 00 24. 56 23.76 23.19 22. 37
/ A
TITTT
a
Kanazawsa and Kawai L LL 67. 58 65. 41 64. 49 64. 02 61. 78
(vef. 4.16). ﬁ_ ______ Cb
° TTT77
Kanazawa and Kawai LLLLLy 81. 57 72. 66 68. 89 66. 96 61. 78
(vef. 4.16). 5»—-—»-_._§b
777777
X{%/G or A
{YJ(V)‘/B w2 m=3,n=4
- X %)@ or 2 4
X, (X)v/e or | 4
v.5i/b X,031/6 or l’ v.(y»./b P
s Y{ y {wus 3’{;3@ o 2 3
1ok {C:‘;% o 50
0.5 =§
£ e . 3 Ty 2
§ ¢ 0f2 : ;'4 05 B :
25 7
T 7/,
0 — /
ok /
sk —éV
) 0.5 ) 05 o

FigURE 4.19.—Mode shape components X,(&)+a or
Ya(#)+/b for a C~C-C-C rectangular plate. (After ref.
4.13)
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FiURE 4.20.—Variation in mode shape components
X (®)vae and Y,V with /b for a C-C-C-C
rectangular plate. (After ref. 4.13)

FI16URE 4.21.—\/w?=wa?/n¥(yp/D) for 2 C-C-C-C rec-
tangular plate.

Claassen and Thorne (refs. 4.35 and 4.36)
used & most straightforward application of the
series method which represented the deflection
form as a double Fourier sine series; that is,

Wiz, y)= Z ZA,,,,, sin 2 sin ;)ry (4.54)

m=1n=1

When the homogeneous boundary conditions
are written for all edges, they result in an in-
finite determinant, the zeros of which are the
desired eigenvalues. Numerical convergence
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TABLE 4.29.-—Frequency Parameters wa?/p/D
for a C-C-C-C Rectangular Plate

{Values in parentheses are interpolated].

wa2+/p/D for value of afb of—
m n 0.50
0.25 0.667
(ref. (ref.
4.60) Ref. Ref. 4.13)
4.60 4.13
1 1 23.19 | 2409 24. 58 27. 01
2| 23.94 3140 31. 83 41. 72
3| 26.32 | 44.35 44. 78 66. 53
4| 30.01 63. 00 63. 34 100. 81
L U IR 87. 26 144. 21
[ R (117) (195)
2 1 62. 17 | 63.93 (64. 1) (65. 5)
2| 63.70 | 70.90 71, 08 79. 81
3 66.23 | 82.90 (83.2) (103)
4| 69.97 | 100. 18 100. 80 136. 10
L P PR (124. 2) (178)
[ I IR IR, 151. 91 230. 04
3 1| 121,59 | 123. 07 (124) (126)
2 | 122. 98 | 130. 13 130. 35 138. 64
3| 125. 74 | 142, 12 142, 38 161. 23
4 | 129. 81 | 156. 47 159. 49 193. 24
15 2 I PR 181. 79 234. 65
[ J PO P (209. 6) (285. 4)
4 1| 20033 | 202. 02 (204) (206)
2 | 202. 00 | 209. 18 (210) (218)
3| 204. 72 | 231. 02 (221} (241)
4 | 208 83 | 238.01 238. 35 27117
5 S R, (261) (312)
6 | ___ 287. 54 361. 90
5 b A N D (302) (303)
P2 I DI 308. 12 316. 11
F> 2 P (320) (339)
- 2 I P 337. 08 369. 34
L R 358. 0 (409)
N R F (382) (456)
6 B N (421) (422)
P2 P R (427) (436)
2 N P (439) (457)
T 20 DR IR (456) (488)
5 . (478) (529)
6 | |eaoo 504. 3 576. 6
| \

is established by successive truncation of the
infinite determinant. The method is also dis-
cussed in reference 4.39.

The frequency as a function of the a/b ratio
for the 10 lowest modes is plotted in reference
4.35. These curves are reproduced as figures
4.22 t0 4.25. Intable 4.30 the accurate values

14.0
oa e
r ....... /
10 o . 7
A BO b %
e}
o
5.0
20 [UURTRTION FECOOUNTPS FURRRTRPS PELEL L
"o 0.2 04 06 0.8 10

FieURE 4.22.—Frequency parameters \/=?= wa?/n*(vp/D)
for modes symmetric about both Z- and §- axes for
a C-C—-C-C rectangular plate. (After ref. 4.35)

220
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/ ¥
.4
14.0 B R
L / b H
'2 . )
100
a
60
20 ,..n:'.'\' feaeass
~o 02 04 06 o8 1.0

a/b

Ficure 4.23.—Frequency parameter A/72==wa?/x2(~/p/D)
for modes symmetric about £=0 and antisymmetric
about =0 for a C—C-C-C rectangular plate. (After
ref. 4.35) ‘

8.0

14.0

?CNI j

0.0

Y] Tl
o] 0.2 04 X3 0.8 Lo

a/b

F1aURE 4.24.—Frequency parameters M 2= wa?/#2(+/p/D)
for modes antisymmetric about Z=0 and symmetric
about §=0 for a C—C-C-C rectangular plate. (After
ref. 4.35)

of frequency used in the preceding plots are
displayed for a/b increments of 0.02 in the
range 1.00=a/b =0 (ref. 4.36).

When one looks, for example, at figure 4.23,
it appears that the curves for the second and
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F1eURE 4.25.—Frequency parameters \/r?=wa?/x%(vp/D)
for modes antisymmetric about both # and g-axes
for a C~C-C-C rectangular plate. (After ref. 4.35)

third symmetric-antisymmetric frequencies
cross in the vicinity of a/b=0.84. Such an
intersection point is termed a ‘‘transition
point.” It is the contention of Claassen and
Thorne that these curves do not actually cross
at transition points but only approach each
other closely before “veering away’ or being
“repelled.” Very small increments of a/b are
taken in reference 4.36 in the vicinity of these
transition points and corresponding values of
frequency parameter A are computed which
appear to substantiate this. The details of
this phenomenon can be seen in table 4.31.

From the table it is seen that the two curves
approach each other most closely at a/b=0.834.
It is the opinion of the writer that, although
extremely precise work was performed in refer-
ence 4.36, certain questions of convergence of
the series approach used need to be answered
before the transition-point phenomena de-
scribed above can be accepted.

In figure 4.26 are shown nodal lines for one
quadrant of the plate for various a/b ratios in
the vicinity of transition points (ref. 4.36).
In these figures the center of the plate is at
(0,0) and the T and ¥ coordinates have been
nondimensionalized to /e and /b, respectively.
The rapid change from one mode form to
another with small variation in a/b is interest-
ing. Precise node-line coordinates used for
figure 4.26 and other nodal patterns are given
in reference 4.36.

Accurate upper and lower bounds for the
doubly symmetric modes of a rectangle (see
discussion earlier in this section) are reported

in reference 4.58. These results are given in
table 4.32. Upper bounds were computed
using 50 admissible beam modes. It is note-
worthy that the second and third doubly sym-
metric modes for the square are for distinct
frequencies, as reported earlier in references
4.36 and 4.47.

4392 CC-CSS

Three sources of numerical data are available
for the problem of the C-C-C-SS plate (fig.
4.27). Results are listed in table 4.33 for the
case of the square.

Some higher frequencies for the square were
obtained by Kaul and Cadambe (ref. 4.61) as a
special case of the parallelogram plate by using
the Rayleigh-Ritz method and beam functions
(see sec. 5.1.1). Frequencies for four higher
modes are presented in table 4.34.

For a general rectangle, a spectrum of funda-
mental frequency parameters is given in
table 4.35.

Frequencies for the first antisymmetric mode
with respect to z=a/2 are given in table 4.36
(ref. 4.16). However, it is obvious that this
is at least the third mode of all mode shapes of
a plate for a/b<1. No detailed mode shapes
are available in the literature, but for ¢/b<1
the second mode clearly must have a nodal line
essentially parallel to the z-axis and located
above y=50/2.

Approximate formulas for frequencies are
given previously in equations (4.16) and (4.17).
Frequency parameters obtained from equation
(4.6) are plotted in figure 4.28 (from ref. 4.4).

For more information on this problem, see
the discussion of the antisymmetric modes of a
C-C-C~C rectangular plate in the preceding
section (sec. 4.3.1). Straight nodal lines of anti-
symmetry duplicate SS boundary conditions.

43.3 CC-CF

The only known results for the problem of the
C-C-C-F plate (fig. 4.29) are the approximate
formulss, equations (4.16) and (4.17).

4.3.4 C-C-SS-5S

Four sources of numerical data are available
for fundamental frequencies of C~-C—-SS-SS rec-
tangular plates (fig. 4.30). The results are
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68 VIBRATION OF PLATES

TaBLE 4.31.—Frequency Parameters wa?+/p/D for the Second and Third Modes Symmetric About
£=0 and Antisymmetric About =0 in Vicinity of a Transition Point

wa2Vp/D for values of a/b of—
Mode
0. 837 0. 836 0. 835 0. 834 0. 833 0. 832 0. 831
Seeond. . _____________ 150. 2685 | 150. 1544 | 150. 0184 | 149. 8461 | 149. 6269 | 149. 3663 149, 0791
Third_ _________ . ____ 151. 2909 | 150. 9951 | 150. 7217 | 150. 4853 | 150. 2963 | 150. 1492 150. 0029
Difference____.________ 1. 0224 . 8407 . 7033 . 6392 . 6694 . 7829 . 9238
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summarized in table 4.37. Kanazawa and
Kawai (ref. 4.16) used an integral equation
formulation.  Hamada (ref. 4.15) used a varia-
tional approach. Iwato (ref. 4.62) used the
Rayleigh-Ritz method and mode shapes of the
form

Wiz, 2/)=Zm) %} Crnn (cos %Z—x

_ . Smzz nwy
€08~ )(cosﬁ—cos

3nry
2b

(4.55)

05

9995

RN

. /o.z:s

.8

0.996

o pa

09999

0 ol 02 03 04 o5
(9) /e

FicURE 4.26.—Nodal patterns for various a/b ratios
in the vicinity of transition points. (a) Second
symmetric-symmetric mode; a/b=0.9 to 0.9999.
(») Third symmetric-symimetric mode; a/b=0.9 to
1.0. (¢) Third symmetric-symmetric mode; a/b=
0.6 to 0.7. (d) Second symmetric-antisymmetric
mode; a/b=08 to 0.9. (¢) Third symmetric-
antisymmetric mode; «/b=08 to 0.9. (/) Third
symmetric-antisymmetric mode; ¢/b=0.5 to 0.6.
(¢) Second antisymmetric-antisymmetric mode; a/b=
0.9 to 0.9999.

and retained Oy, Oy, Cs, and Cs;.  Nishimura
(vef. 4.14) used finite difference equations. Ap-
proximate formulas, equations (4.16) and (4.17),
may also be used. Frequency parameters ob-
tained from equation (4.16) are plotted in figure
4.31 (from ref. 4.4) for four modes.

For more information on this problem, see
the discussion of the doubly antisymmetric
modes of & C-C-C-C rectangular plate (sec.
4.3.1). Straight node lines of antisymmetry
duplicate simply supported boundary conditions.
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TABLE 4.33.—Frequency Parameters wa?/p/D for
a C-C-C-S8S Square Plate

71

TABLE 4.34.—Frequency Parameters for Higher
Mode Shapes of a C~-C-C-SS Square Plate

wa?+y/p/D for mode— Mode 6 7 8 ‘ 9
Source
1 2 3 4 5 wa?o/D - - __ 130. 84 | 152.75 | 160.00 | 209.97
Dill and Pister
(ref. 4.24) _____ 31.83 163. 33 |71. 08 [100. 8 | 116. 4
Kanazawa and 435 C-C-SS-F
Kawai (ref.
H4‘16c)1—""f ----- 31.88 |...... 7126 fooooloees The only known results for the problem of
v TP L A N N the C-C-SS-F plate (fig. 4.32) are the approxi-
mate formulas, equations (4.16) and (4.17).

TaBLE 4.35.—Fundamental Frequency Parameters wa®/p/D for a C-C-C-SS Rectangular Plate

watVp/ D for values of a/b of—

Source
0 0.333 0.4 0.5 0.667 1 1.5 2
Dill and Pister (ref. 4.24) - - _ | o |oo__. 2449 | _______ 31.83 ... _.__ 73. 07
Kanazawa and Kawai (ref. 4.16)____| 22.39 23. 40 23.76 2448 26. 23 3L 87 || ___
Hamada (ref. 4.18) . | |ee e 25.85 | 31.83 48. 1 .. __

TaBLE 4.36.—Fundamental Frequency Parameters wa’\/p/D for the First Antisymmetric Mode of a
C-C-C-S88 Rectangular Plate

we?y p/ D for values of afb of—

Mode shape
0 0.333 0.4 0.5 0.667 i
A=3""VYb
v, i 61. 781 63. 947 684. 366 65. 161 66. 971 71. 259
777
a

TaBLE 4.37.—Fundamental Frequency

Parameters wal/p/D for a C-C-SS-SS Rectangular Plate

wayp/D for values of afb of—

Source
0 0.333 0.4 0.5 0.667 1 1.5
Kanazawa and Kawai (ref. 4.16)____._________ 15. 45 16. 74 17. 22 18. 16 20.30 | 27.10 | _______
Hamada (ref. 4.15) o ol 27. 00 44. 90
Iwato (ref. 4.62) - . e e e e 28,357 |__._____
Nishimura (ref. 4.14) . . oo e e 27.234 |________
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Ficore 4.27.—C-C-C-S8 plate.
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Figure 4.28.—Frequency parameter 0.90wb?yp/D for
a C-C-C-S8 rectangular plate. (After ref. 4.4)
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Fiaure 4.30.—C-C-88-SS plate.
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Freure 4.31.—Frequency parameters 0.90wb?y/p/D for
a C-C~88-S8 rectangular plate. (After ref. 4.4)
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Figure 4.29.—C-C-C-F plate.

436 CC-F-F

The problem of the C-C-F-F rectangular
plate (fig. 4.33) was investigated by Young
(ref. 4.47), who used the products of beam
functions and the Rayleigh-Ritz method to
obtain accurate upper bounds for frequencies

N\

SIS ST

Figure 4.32.—C-C-SS-F plate.

in the case of the square plate for »=0.3.
These resuits are summarized in table 4.38.
The resulting mode shapes are of the form of
equation (4.49) where the values of A4,, are
given in table 4.38 and « and e are given in
table 4.39 (from ref. 4.47).
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F1qURE 4.33.—C-C-F-F plate.

antisymmetry duplicate SS boundary con-
ditions.

TaBLE 4.39.—Eigenfunction Parameters for a

A fundamental frequency of large error is
also computed in reference 4.48 by use of the
Rayleigh-Ritz method.

Results from using the Galerkin method are
given in reference 4.46; these results also appear
to have considerable error, particularly for the
fundamental mode. Approximate formulas,
equations (4.16) and (4.17), may also be used.

4.3.7 C-SS5-C-F

The approximate formulas, equations (4.16)
and (4.17), may be used for the problem of a
C-SS-C-F rectangular plate (fig. 4.34). Addi-
tional information can be obtained from an
antisymmetric mode of the case of the C-F-
C-F plate (sec. 4.3.10). Straight node lines of

C-F Beam
m,n Qmy Qn €my €n
) 0. 7340955 1, 8751041
2 . 1. 01846644 4. 6940911
SR . 99922450 7. 8547574
4 . 1. 00003355 10. 9955407
L . 99999855 14, 1371684
r>5 o ___ 1.0 2r—x/2
y
Z 2
7 7
7
7 4
b /
%
Y 4
/ v
/ “
; : 2
/ TT .

Froure 4.34.—C-SS-C-F plate.

TABLE 4.38.—First Five Sets of Frequency Parameters, Nodal Lines, and Amplitude Coefficients for

a O-C-F-F Square Plaie; v=0.3

Mode_ . __________. 1 2 3 4 5
watyo/D___________ 6.958 24.80 26.80 48.05 63.14
y. Y\ ___lﬂ / P
. / TN V ! A S
/ Ve
Nodal lines_ _______ A g A ; A7
// e 7777 777 7. 777
Amplitude coeffi- An=1.0000 Ap= 0 An=—0.1172 Au= 0.0286 An= 0
cients, A= 0.0604 A= 1.0000 A= 1.0000 A=—0.1566 A= 0.0030
A;z=—10.0030 Apz= 0.00003 A= 0.0553 A= —0.0825 A= 1.0000
Axu= 0.0604 Ag=—1.0000 Au= 1.0000 Ay=—0.15686 A= —0.0030
A22= —0.0101 A“: 0 A“-;: 0.3223 An: 1.0000 An: 0
Ag=—0.0003 Agz=—0.0221 Agz= 0.0111 Ayz= —.1458 Apx= 0.1350
Asz=—0.0030 An=-—0.00003 | Au= 0.0553 Ag=—0.0825 Ag=—1.0000
Aze=—0.0003 Aze= 0.0221 Age= 0.0111 Aag= 0.1458 Azy=—0.1350
Az=—0.0017 Azpz= O A= 0.0022 A= —0.0019 Azp= O

308337 0—70——$6
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43,8 C-SS-SS-F

The only known results for the problem of
the C-SS-SS-F rectangular plate (fig. 4.35)
are the approximate formulas, equations (4.16)
and (4.17). Additional information can be
obtained from the doubly antisymmetric modes
of the C-F-C-F plate (sec. 4.3.10). Straight
node lines of antisymmetry duplicate SS
boundary conditions.
43,9 C-SS-F-F

The only known results for the problem of
the C-SS-F-F rectangular plate (fig. 4.36) are
the approximate formulas, equations (4.16)
and (4.17). Additional results can be obtained
from the antisymmetric modes of the C-F-
F-F plate (sec. 4.3.12). Straight node lines
of antisymmetry duplicate SS boundary
conditions.

43.10 CF-C-F

Claassen and Thorne (ref. 4.36) used the
series method described in the section for

/ H
7/ {
7 E
1 |
7 !
,4 _____________ Qe e )

FigURrE 4.35.—C-SS-S8-F plate.

-

SOOI,

SO
o

F1aurE 4.36.—C-8S-F-F plate.

the C-C-C-C rectangular plate (sec. 4.3.1)
to obtain frequencies for 11 modes and varying
a/b ratios for the C-F-C-F rectangular plate
(fig. 4.37). These modes will be classified
as symmetric-symmetric, symmetric-antisym-
metric, antisymmetric-symmetric, and anti-
symmetric-antisymmetric, according to the
symmetry or antisymmetry exhibited about
the axes =0 and y=0, respectively, as shown
in figure 4.37. The first mode of each class is
illustrated in figure 4.38. Frequency results are
summarized in tables 4.40 to 4.43. Poisson’s
ratio is not known, but is assumed to be 0.3
as in reference 4.63.

A question arises about the foregoing results
in one of the limiting cases. It would appear

¥ ¥
a/2
/
7 /
7 b2l
/ L
7 %
b -
7 2k
Vs v
7 /
7 2
7 a X

Figure 4.37.—C-F-C-F plate.

O,
Y
N W ——

(e} (d)

Figure 4.38.—Lowest nodal patterns in the four
classes of symmetry for a C-F-C-F plate. (a) First
symmetric-symmetric mode. (b) First symmetrie-
antisymmetric mode. (¢) First antisymmetric-sym-
metric mode. (d) First antisymmetric-antisym-
metrie mode.
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from table 4.40 that the doubly symmetric
frequencies all vanish as b/a—0. However, as
b 1s held fixed and a becomes infinite, it is
obvious that the boundary conditions at z=0
and r=c are no longer significant, and the

TABLE 4.41.—Frequency Parameters A= wa%/p/D
and Z\*=wb?%/p/D for the Symmetric-Antisym-
metric Modes of @ C—F-C-F Rectangular Plate

Mode
fundamental frequency becomes that of an
infinite strip having two node lines parallel to If;{lbffgrr{‘; 1 9
the z-axis. Additional frequency parameters in
the vicinity of ‘“transition points” (see sec. 2\ A% a A
4.3.1) and detailed coordinates of nodal lines
are given in reference 4.36. L0 26. 40 | 26, 40 79. 8 79. 8
Approximate values of frequency parameters 09 25.67 | 22 10 68. 4 76. 1
are given by equations (4.16) and (4.17). 0.8 ... 24.99 | 18.22 58. 2 72.9
0.7 . 24, 38 14. 75 49. 3 65. 2
0.6_ . _________ 23. 84 11. 68 41. 8 49. 5
I T 23. 8.9 35. 5 . 2
TasLE  4.40.—Frequency  Parameters M= g Z 23 ?56 6 62 33 6 gg 1
waly/p/D and N*=wb%/p/D for the Doubly 93 _____ ______ 22,7 463 268 16. 3
Symmetric Modes of a C~-F-C-F Rectangular  0.2____________ 22. 5 2. 88 24.2 9.4
Plate 0.1 . 22.3 .36 227 4.1
O ._ 22. 4 0 22. 4 .0
Mode
Ratio a/b 1 2 3 4 5 TABLE 4.42.—Frequency Parameters \=wa%/p/D
‘ and A*=wb%/p/D for the Antisymmetric-Sym-
‘ A metric Modes of a C—-F-C-F Rectangular Plate
|
100 . 22.17 | 43.6 120.1 | 136.9 | 149.3 { Mode
0.9. .. .| 2219 |30.5| 1142 | 120.1 | 143. 9 a/b for A,
0.8 . _____. 22. 20 35. 8 94.1 | 120.2 | 139. 1 bja for A* ! 1 2
0.7 ______.__| 22 22 32.6 76.3 | 120.3 | 134. 8
0.6 e 22.24 {20.8| 6L1 | 1204|1225 N - N A
0.5 ________. 22. 26 27. 5 48. 6 90.3 | 120. 4
04 . ________ 22, 28 25. 6 38. 5 64.3 | 103. 6
03 ____ 22.3 24. 1 31.0 44. 6 65. 9 1.0 6.2 61.2 87. 5 R7. 5
0.2 _________ 22.3 23.1 26. 0 31. 4 40. 9 0.9 _ 61. 2 49 5 82, 8 75,7
0.1 . 22.3 22. 5 23.1 24. 3 26. 1 0.8 81. 3 30. 1 78, 4 64. 9
[ 22. 4 22. 4 22. 4 22. 4 22. 4 07 61. 3 29. 9 74 5 55. 4
0.6 ______.___. 61. 4 21. 9 71.1 47. 0
05 ______.___. 61. 4 15. 2 68. 2 39. 8
*®
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